Lack of effective treatment for patient with high-risk (e.g., 1q21 gain or 1q+) and relapsed/refractory multiple myeloma (MM), due to poor understanding of the mechanisms underlying primary and acquired drug-resistance, currently represent two major challenges in clinical practice. Recently, it has been demonstrated that hypoxia up-regulates KMD4A, a lysine demethylase, which in turn triggers site-specific copy gain of 1q21-23 where HIF-1β and NF-κB-related genes localize. Our preliminary results showed that KMD4A and HIF-1β were highly expressed, accompanied by NF-κB activation, in both 1q+ and acquired bortezomib-resistant MM cells. Thus, we hypothesize that hypoxia in bone marrow microenvironment may cause 1q21 copy gain via KMD4A upregulation, resulting in HIF-1β amplification and NF-κB activation. Here, we propose three specific aims: a) define the hypoxia-KDM4A-1q21-HIF-1β/NF-κB signaling cascade in 1q+ and bortezomib-resistant cells; b) explore the functional role of the novel KDM4A-HIF-1β/NF-κB pathway in primary (1q+) and acquired (RRMM) drug-resistance; and c) validate the relationship between KDM4A-HIF-1β/NF-κB activation and clinical outcomes of patients with 1q+ high-risk MM or RRMM. We anticipate that these studies would provide an entirely new insight into drug-resistance in high-risk MM and RRMM.
伴高危细胞遗传学异常(如1q21扩增,1q+)和复发难治(RR)的多发性骨髓瘤(MM)存在原发和获得性耐药。由于对耐药的原因、功能及其调控机制认识不足,尚缺乏有效治疗,是目前临床的两大难题。最近报道缺氧可能上调KDM4A,致1q21-23扩增,而该区域含有HIF-1β及NF-κB相关基因。我们前期工作发现,1q+及硼替佐米(Btz)耐药细胞系中KDM4A和HIF-1β高表达,伴NF-κB激活。据此,我们假设骨髓缺氧微环境可能通过KDM4A上调,1q扩增,导致HIF-1β及NF-κB激活,参与耐药。因此,本课题拟阐明:缺氧-KDM4A-1q21-HIF-1β/NF-κB通路与原发性(1q+)和继发性(RRMM)耐药的关系;KDM4A-HIF-1β/NF-κB通路在耐药中作用及分子机制;1q+和RRMM患者中该通路与耐药、预后的关系,以期从全新的角度认识1q+高危亚型MM和RRMM的耐药机制。
1q扩增代表多发性骨髓瘤(MM)中最常见的高危细胞遗传学异常(CA),其与复发难治MM(RRMM)代表当前临床治疗的两大难题,当前治疗中尚不能改善其不良预后,主要原因是1q扩增驱动原发性耐药和获得性耐药的机制不明,故缺乏分子靶点。通过本项目的研究,我们从转录因子和表观遗传的角度,为认识1q扩增介导原发性耐药、RRMM继发性耐药、及骨髓微环境诱导耐药的分子基础提供了新的思路和证据,并发现耐药相关的新分子靶点,重要结果包括:1)首次揭示了HIF-1b在1q扩增高危亚型MM、获得性耐药、及骨髓缺氧微环境诱导Btz耐药的共同新机制,并发现HIF-1b作为NF-kB信号途径的下游分子,可能成为克服1q扩增高危亚型原发性耐药、RRMM获得性耐药及微环境介导耐药的新靶点;2)首次发现KDM4A是MM中一个新的肿瘤抑制因子(与其在实体瘤中的促癌基因作用相反),验证了其作为1p区基因对1q21区基因表达的负调控作用,从而揭示了1q扩增高危亚型MM中1q21区基因表达调节的新机制,同时发现KDM4A作为组蛋白去甲基化酶,其在1q扩增高危亚型MM原发性耐药、RRMM获得性耐药、及骨髓缺氧微环境诱导耐药中起重要作用,为从表观遗传学角度认识这些MM耐药的机制提供了新的线索和分子靶点;3)首次发现TET2在MM及其获得性耐药中的作用,以及直接或通过KDM4A对1q21区基因表达的负调节作用,进一步拓展了1q扩增高危亚型MM的分子调控机制,提出TET2作为介导DNA去甲基化的表观修饰酶,是继KDM4A之后,第二个与1q扩增MM及RRMM相关的另一新表观靶点。同时,本项目还围绕1q扩增高危MM开展或完成了以下临床转化研究:a)全国多中心MM细胞遗传学异常(CA)流行病学调查;b)1q扩增高危亚型MM的临床特征;c)1q扩增高危亚型MM的疗效和预后;d)1q扩增与早期死亡;e)1q扩增与早期复发;f)1q扩增与双打击MM;g)1q扩增与IgD型MM;h)1q扩增与MRD。系统阐述了1q扩增MM的流行病学和临床特征、疗效和预后、及其与多种临床预后相关因素的关系,为其精准临床诊疗体系和指南的建立,奠定了基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
Intensive photocatalytic activity enhancement of Bi5O7I via coupling with band structure and content adjustable BiOBrxI1-x
Asymmetric Synthesis of (S)-14-Methyl-1-octadecene, the Sex Pheromone of the Peach Leafminer Moth
七羟基异黄酮通过 Id1 影响结直肠癌细胞增殖
The Role of Osteokines in Sarcopenia: Therapeutic Directions and Application Prospects
Sparse Coding Algorithm with Negentropy and Weighted ℓ1-Norm for Signal Reconstruction
复发难治多发性骨髓瘤中NF-κB介导硼替佐米旁路耐药机制及其精准靶向治疗对策
BUB1B调控多发性骨髓瘤细胞增殖和耐药作用及机制研究
复发难治性多发性骨髓瘤中新的遗传学标志的发现及其致病机制研究
TRIP13通过NF-κB信号通路介导骨髓瘤耐药的分子机制研究