We, for the first time, propose to study a new series of anode materials which integrate P、Si、Ge and Zn four lithium-reactive elements of into one stable chalcopyrite structure to form multielement all-lithium-reactive components P2SixGe1-xZn(0≤x≤1) for lithium-ion batteries. Our preliminary study results indicate that the series of anode materials can deliver a large reversible capacity ranged from 1600 to 2000 mAh/g, nearly twice binary transition metal phosphides; and meanwhile, their initial coulombic efficiencies reach as high as 94%, ranking the best among all the high-capacity anode materials reported to date and comparable with commercial graphite's. Till now, the specific research on the structural characteristics and physico-chemical properties etc of the series of materials have seldom been reported yet. In this project, we will investigate systematically the series of anode materials on their preparation, structural characteristics and physico-chemical properties such as thermal and chemical stability. Specifically, we will prepare the series of P2SixGe1-xZn(0≤x≤1) anode materials and explore the effect of various x value form 0 to 1 on crystal and electronic structure through XRD structure refinement analysis and first principal calculation, respectively; identify the structure-performance relationship and lithium-storage mechanism via electrochemical techniques and comprehensive physico-chemical characterizations; modify their electrochemical lithium-storage performances according to the obtained structural and electrochemical features; and finally evaluate their real application as anode materials for lithium-ion batteries. The project implementation can provide theoretical guidance and technical reference for the development of the novel series of multielement all-lithium-reactive component P2SixGe1-xZn(0≤x≤1) anode materials, understanding of their physico-chemical properties, and application as anode materials for lithium-ion batteries.
本项目首次将具有锂反应活性的P、Si、Ge、Zn四种元素同时引入到稳定的黄铜矿结构中形成P2SixGe1-xZn(0≤x≤1)系列材料作为锂离子电池新型多元全活性负极材料,近期研究表明该系列材料能给出高达1600-2000mAh/g可逆比容量,接近二元过渡金属磷化物容量的两倍;同时给出高达94%的首效,为目前大容量负极材料报道的最高值、可以与商用石墨的相媲美。目前该系列材料的结构、理化性质等尚缺乏系统性研究。本项目将系统研究该系列材料的制备、理化性质如热稳定性和化学稳定性;通过结构精修和第一性原理计算x变化时对晶体结构和导电性的影响;通过电化学技术及多方位的理化表征来研究该系列材料的性能与结构之间的构效关系及储锂机制,并根据其结构特点及电化学特征进行性能优化,对其作为锂离子电池负极材料的应用进行综合性能评价,为该系列负极材料的研发、理化特性认知及实际应用提供理论指导和技术借鉴。
锂离子电池是电动汽车、智能电网及其它新兴技术中最有潜力的电源之一。其中负极材料是锂离子电池的重要组成部分,但传统的石墨负极因容量低、倍率性能差而无法满足日益剧增的能量需求。为此,急需研究具有大容量、高首效、低电位、高稳定性等优点的负极材料。本项目通过高能球磨法合成了一系列阳离子无序多元磷化物系列负极材料,深入研究了该系列材料的晶体结构、理化性质及电化学性能之间的构效关系,发现阳离子无序系列负极材料不仅能够在电子导电性、锂离子输运能力和容量方面做到较好的折中;更重要的是,各种元素能够发挥各自的优势,在充放电过程中能够内生电子、锂离子导体从而提高材料的电化学性能。研究结果如下:.(1)通过简单的高能球磨法成功地合成了阳离子无序三元全活性ZnSiP2、ZnGeP2负极材料,还扩展到了多种性能优良的新型阳离子无序Zn(Cu)-Si-P、Zn(Cu)Si2+xP3、Cu(Zn)Ge2+xP3、Zn-Ge(Si)-P家族化合物、多元In(Ga)-Si(Ge)-P化合物,以及二元GeP、ZnP2、Ge2P3、CuP3、CuP5等化合物。.(2)利用结构精修探明阳离子无序系列负极材料的晶体结构,并以第一性原理计算厘清新型材料的电导特性、锂/钠离子输运能力及抗体积膨胀能力。 .(3)通过用全方位的表征手段明确了阳离子无序负极材料及相关扩展材料的储锂机制,探明了材料的晶体结构、理化性质与电化学性能之间的构效关系,及其嵌锂中间相的组分、结构、理化性质之间的构效关系,找出了材料改性及优化方案,评估了电极材料在锂离子电池中的应用前景和方向。.通过上述研究,我们制备出了一系列新型锂离子电池用负极材料,拓宽了无机材料数据库,开拓了一系列电化学性能优越的阳离子无序多元磷化物负极材料,为开发实用新型高性能负极材料提供了重要的理论基础及技术指导。本项目在执行期间,在Energy Environ. Sci.,Adv. Funct. Mater.,Nano Energy等知名期刊上共发表学术论文13篇,其中影响因子大于30的1篇、大于10的7篇。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
Intensive photocatalytic activity enhancement of Bi5O7I via coupling with band structure and content adjustable BiOBrxI1-x
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
Asymmetric Synthesis of (S)-14-Methyl-1-octadecene, the Sex Pheromone of the Peach Leafminer Moth
七羟基异黄酮通过 Id1 影响结直肠癌细胞增殖
锂离子电池硅酸盐负极材料及其储锂机理研究
锂离子电池新型纳米硅基复合多孔负极构效关系及界面特性研究
先进CHS结构柔性复合负极材料的可控制备及其储能构效关系研究
锂离子电池负极材料硅/石墨烯插层复合薄膜的结构和储锂性能的研究