The frequent startup-shutdown of urban rail transit locomotive produces enormous energy loss. This project proposes a novel double stator bearingless flywheel electric energy storage machine for land vehicle, which has high integration, small loss, large radial load, self-decoupling of torque and suspending systems, focusing on the research of the motor system and its regenerative braking energy control: (1) To realize multi-objective optimization design of electric and heat coupling, mechanism characteristics of motor would be analyzed, and mutual constraint relations of primary variables would be provided; furthermore, the design theory and procedure of five-degree freedom support system which has high integration, strong disturbance rejection ,and Large road, and fault-tolerant hybrid unloading magnet would be provided. (2) To realize translation and coning motion, precession and nutation modal decoupling control on flywheel rotor supporting system with strong disturbance rejection and time-varying uncertain parameters, hybrid modeling and unmodeled dynamics of bearing support system would be provided by means of analyzing influence of locomotive condition on motor orientation. (3) To realize the optimal power allocation strategy for energy consumption for power tracking control of output power of flywheel energy storage, fast-wide speed method of large inertia flywheel machine, energy consumption predicting of regenerative braking system and hybrid modeling theory would be researched based on coordinated control for flywheel energy storage and regenerative braking energy. The project is a fundamental research of electrical engineering, control engineering and vehicle engineering interdisciplinary. It is of great significance to improve the level of urban rail transit regenerative braking equipment.
城市轨道交通机车频繁启停产生巨大能量损耗。本项目提出一种高集成、低损耗、径向大承载、转矩-悬浮自解耦的新型车载双定子磁悬浮飞轮储能电机,着重围绕该电机系统及其再生制动能量控制开展研究:(1)分析双定子磁悬浮飞轮电机机理特性与主要物理量相互约束关系,实现电-热双耦合多目标优化设计;给出高集成、强抗扰、大承载五自由度支承系统和容错混合式卸载轴承设计理论与方法;(2)分析机车工况对转子姿态影响规律,构建融合机理模型与未建模动态的悬浮支承系统模型,实现强扰动、参数时变不确定飞轮转子支承系统平动与锥动、章动与进动模态解耦控制;(3)针对飞轮储能与再生制动能量协调控制,研究大惯量飞轮电机快-宽充放电控制方法以及再生制动系统能耗预估与混杂建模理论,获取“能耗最优”功率分配策略,实现飞轮储能输出功率跟踪控制。该项目实施对提高我国城轨交通机车运行能效和装备水平均具有重大意义。
对于车载飞轮电池应用场合,悬浮飞轮转子系统时刻面临较强的外部惯性扰动力的影响;在急加减速等少数时间段,飞轮转子还会受到极端冲击扰动,对飞轮转子的鲁棒悬浮提出了极高的要求。为提高磁悬浮支承系统的悬浮力输出能力,降低系统的体积与悬浮功耗。本项目提出混合单绕组磁悬浮开关磁阻电机(HSWBSRM)结构,将单绕组磁悬浮开关磁阻电机模块设计,与直流磁悬浮轴承一体化集成。进一步地将HSWBSRM宽支承系统的定子凸极与转子凸极设计为宽齿-窄齿互相配合形式,引入轴向充磁永磁体提供产生悬浮力的偏置磁场。上述拓扑能通过单绕组磁悬浮开关磁阻电机的协调控制有效拓宽悬浮力输出范围,且永磁偏置的使用进一步降低了静态悬浮功耗。针对HSWBSRM转矩与悬浮系统相互耦合的问题,提出了基于双系统协同优化策略的参数一体化设计方法,对悬浮/转矩系统进行交互协同优化,完成参数一体化设计。完成HSWBSRM悬浮系统的等效磁路在整个转子位置周期内的具有变结构特征下的新的精确数学建模,揭示全位置周期内的悬浮力动态变化特性。最后,对悬浮模式下强鲁棒、高精度控制策略以及转速模式下的飞轮电池能量管理控制策略等关键技术开展研究。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于SSVEP 直接脑控机器人方向和速度研究
拥堵路网交通流均衡分配模型
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
城市轨道交通车站火灾情况下客流疏散能力评价
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
基于磁悬浮开关磁阻电机的飞轮储能系统运行控制研究
电动车辆再生制动用新型轴向飞轮储能电机系统的基础研究
飞轮储能用新型磁悬浮无轴承异步电机系统研究
新型电动拖拉机用磁悬浮储能飞轮转子非线性控制策略研究