The traditional liver surgery such as tumor excision and transplantation relies much on doctors' surgical experience, where the safty requirs significant improvement. In order to solve the problems, this project proposes a new segmentation algorithm, which is based on a novel composed sparse contour model and a minimum supervised classification, for lesion area, liver parenchyma, portal vein and hepatic vein. Using the segmentation result, it can also automatically divide the liver into eight Couinaud segments. The proposed algorithm will provide a fundamental theory, algorithm and surgical planning for image guided liver surgery and liver transplantation.The new algorithm inludes a novel composed sparse contour model, and uses the statistical and spatial information extracted from the medical image to achieve the minimum supervised classification of regions of interest. It can solve the difficult problem of fuzzy boundary of liver lesions and has a large advantage in accuracy, which is expected to reach the standard of the clinical application and realizes independent innovation. The efficiency and robustness of the proposed algorithm will be tested by using plenty of clinical datasets ( mainly 3D CT abdomen data). The implementation of this project will bring in a series of high level research outputs in medical image processing, virtual modeling, pattern recognition, publish a bunch of high level research papers, and also achieve clinical application which has completely independent intellectual property rights.
针对目前临床肝脏病灶切除、移植等手术中存在的依赖医生经验、安全性有待提高的临床实际问题,该项目提出了一种新的基于组合稀疏轮廓(CSC)先验模型和最小监督分类思想的病变肝区、肝脏实质、门静脉和肝静脉的分割算法思想并根据分割结果自动对肝脏进行Couinaud八段划分的解决方案。通过相关算法的理论研究,为计算机辅助肝脏切割手术尤其是活体肝脏移植手术的治疗计划提供理论支持。新算法针对病变肝脏边界模糊的难题首次提出组合稀疏轮廓(CSC)先验模型;同时从医学图像中提取统计及空间信息来进行感兴趣区的最小监督分类,在精度上拥有较大的优势,有望达到临床应用的标准并实现自主创新。开发出的算法将经过大量的临床医学实验(主要针对三维CT腹部数据)验证其精度、可靠性和实用性,在医学图像处理、虚拟器官建模、模式识别等领域完成一系列高水平的研究成果,发表高水平学术论文,并实现有完全自主知识产权的创新性临床应用。
本项目针对目前临床肝脏病灶切除移植等手术中存在的依赖医生经验、安全性有待提高的临床实际问题,研究出了一种新的基于组合稀疏轮廓(Composed Sparse Contour, CSC)先验模型和最小监督分类思想的病变肝区、肝脏实质、门静脉和肝静脉的分割算法,并根据分割结果自动对肝脏进行Couinaud八段划分的解决方案。该算法经过大量的实验(主要针对三维CT腹部数据)验证了其精度、可靠性和实用性,实现了自主创新。该项目在实施过程中在医学图像处理、虚拟器官建模、模式识别等领域发表了一些高水平的学术论文(SCI/EI索引)获得了较高的学术影响。同时相关研究成果申请了四项国家发明专利,具有一定应用价值,实现了完全自主知识产权的创新性临床应用。 该项目的研究成果将直接应用于新一代肝脏疾病辅助诊断和肝脏手术规划系统中,产业化前景广阔。
{{i.achievement_title}}
数据更新时间:2023-05-31
粗颗粒土的静止土压力系数非线性分析与计算方法
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
中国参与全球价值链的环境效应分析
基于公众情感倾向的主题公园评价研究——以哈尔滨市伏尔加庄园为例
基于细粒度词表示的命名实体识别研究
基于稀疏表示和流形理论的半监督分类研究
基于层次视觉语义模型和稀疏表征的高分辨SAR图像的分割和分类
稀疏性先验知识在轮廓提取中的应用研究
基于人类教育学习模型及稀疏表示的半监督目标识别与分类研究