The problem of cutting stability is often a key challenge needed to be solved urgently in high efficient machining of thin-walled parts. In order to solve this problem, the theory and methods for high efficiency mirror machining thin-walled parts based on surface reconstruction and stiffness adaptation will be carried out. Theoretical modeling, algorithm design and experimental verification are integrated to study and verify the new developed toolpath considering the combining effect of cutting dynamics and vibration stability theory. First of all, by studying the coupling relationship between machining features and face detection and wall thickness monitoring, the dynamic modeling method of multi-surface coupling and reconstruction of thin-walled parts is explored. Then, the extraction and expression of hybrid constraints in processing area will be studied. By means of dynamic Bayesian network reasoning, a multi-constrained real-time driving method of toolpath design is proposed. Based on the study of the dynamic cutting force, the nonlinear mapping and evolution of the variable stiffness and the cutting stability of the process system are studied. The high speed cutting stability model under the real-time compensation is constructed. Finally, the sensitivity of the dynamic response stabilization boundary to the stiffness and damping of the dynamic support is studied, and the evolution law of the system stability field under given process parameters is obtained. The steady stiffness field of the processing system is constructed and the active control of the stability of the process system is put forward method. The expected research achievements will have very important application value for high efficiency and precise machining technology, and will also enrich the toolpath planning strategies for five-axis high performance machining.
薄壁件加工中的切削稳定性问题一直是高效精密制造中迫切需要解决的难题。本项目基于申请人前期研究成果,融合切削动力学和振动稳定性理论,采取理论建模、算法设计和实验验证相结合的思路,提出基于面型重构与刚度适配的薄壁件镜像加工刀轨控制新原理和新方法。首先通过研究加工特征与面型检测、壁厚监测间的耦合关系,探索薄壁件多曲面耦合重构及加工特征动态建模方法;接着研究加工区域混合约束的提取和表达方法,借助动态贝叶斯网络推理,建立多约束实时驱动下等壁厚加工刀轨设计方法;研究动态切削力激励下,工艺系统变刚度特性与切削稳定性之间的非线性映射及演化关系,构造切深实时补偿下的高速切削稳定性模型;最后研究动态响应稳定边界对随动支撑刚度和阻尼的敏感度特性,获得给定工艺参数下的系统稳定域演化规律,进而构建加工系统稳态刚度场图,并提出工艺系统稳定性的主动控制方法。预期研究成果将为薄壁零件的高效精密制造提供科学方法与实践依据。
本项目于2017年8月批准立项,2018年1月开始实施,2021年12月结题。项目研究内容包括四个方面:薄壁件多曲面耦合重构及加工特征动态建模、多约束实时驱动下等壁厚加工刀轨设计方法、“刀具-薄壁件-随动支撑”工艺系统刚度与稳定性匹配机理、软件开发和工程应用。薄壁件加工中的切削稳定性问题一直是高效精密制造中迫切需要解决的难题。本项目基于申请人前期研究成果,融合切削动力学和振动稳定性理论,采取理论建模、算法设计和实验验证相结合的思路,提出基于面型重构与刚度适配的薄壁件镜像加工刀轨控制新原理和新方法。首先通过研究加工特征与面型检测、壁厚监测间的耦合关系,探索薄壁件多曲面耦合重构及加工特征动态建模方法;接着研究加工区域混合约束的提取和表达方法,借助动态贝叶斯网络推理,建立多约束实时驱动下等壁厚加工刀轨设计方法;研究动态切削力激励下,工艺系统变刚度特性与切削稳定性之间的非线性映射及演化关系,构造切深实时补偿下的高速切削稳定性模型;最后研究动态响应稳定边界对随动支撑刚度和阻尼的敏感度特性,获得给定工艺参数下的系统稳定域演化规律,进而构建加工系统稳态刚度场图,并提出工艺系统稳定性的主动控制方法。在飞机蒙皮镜像铣装备和加工工艺支持的情况下,分析和优化了飞机蒙皮镜像铣加工工艺,提出了飞机蒙皮镜像加工变形迭代预测方法和飞机蒙皮镜像加工误差实时补偿优化方法,实现了飞机蒙皮镜像加工变形分析和工艺控制策略。针对球头铣刀五轴加工中的稳定性和刀具路径优化两方面进行了研究,提出了基于接触区域的姿态稳定性图构建方法,并结合机床旋转轴限制和加工中的几何约束得到多约束下的优化刀具路径,实现了五轴稳定性加工。研究成果将为薄壁零件的高效精密制造提供科学方法与实践依据。在本项目资助下,已发表论文19篇,其中SCI 13篇,EI收录6篇,正在撰写SCI论文2篇;已授权发明专利2项,发明专利进入实审2项,登记软件著作权2项。
{{i.achievement_title}}
数据更新时间:2023-05-31
F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度
滚动直线导轨副静刚度试验装置设计
基于非线性接触刚度的铰接/锁紧结构动力学建模方法
地震作用下岩羊村滑坡稳定性与失稳机制研究
采用黏弹性人工边界时显式算法稳定性条件
基于约束融合机理的薄壁件高效加工刀轨规划理论与方法
薄壁构件镜像加工刚度补偿支撑机构设计方法研究
薄壁件镜像加工的稳定性预测及基于主动支撑的振动控制研究
大型板壳类薄壁件加工用柔性夹具动态自重构关键理论与技术研究