ZnO has potential application prospects in the field of short-wavelength optoelectronic devices. But the lack of stable p-type ZnO materials has become a bottleneck hindering its application, and it has directly led to the p-type ZnO gradually entering the research trough. Exploring the decisive factors affecting the conductivity stability of p-type ZnO is an important scientific and difficult problem to be solved urgently in the world. Based on the previous years of research accumulation, this present application proposes that zinc interstitial clusters may be the most common and decisive factor affecting the conductivity stability of p-type ZnO. For N-doped ZnO systems, the mechanism of the influence of zinc interstitial clusters on the conductivity stability of p-type ZnO:N films was investigated in depth by experimental and theoretical calculations. The research contents include: (1) Explore an effective method for regulating the zinc interstitial clusters in ZnO thin films; (2) Study the formation and evolution mechanism of zinc interstitial clusters; (3) Prepare repeatable p-type ZnO:N film and study the microscopic mechanism of p-type conductivity; (4) Establish the relationship between the concentration of zinc interstitial clusters and the conductivity of p-type ZnO:N thin films with time and external environment, and study the mechanism of the influence of zinc interstitial clusters on the conductivity stability of p-type ZnO:N films. It is hoped that through the research of this project, it provides an effective way and reference for the preparation of high stability p-type ZnO materials.
ZnO在短波长光电子器件领域具有潜在的应用前景,但缺乏稳定的p型ZnO已成为阻碍其应用的瓶颈,也直接导致p型ZnO逐步进入研究低谷。探索影响p型ZnO导电稳定性的决定性因素,是当前国际上亟待解决的重要科学难题。基于前期多年的研究积累,本申请提出“间隙锌团簇可能是影响p型ZnO导电稳定性的最具普遍性和决定性的因素”的新观点。为此,本项目拟结合实验和理论计算,针对N掺杂ZnO体系,深入研究间隙锌团簇对p型ZnO:N薄膜导电稳定性的影响机理。研究内容含:1) 探索有效调控ZnO薄膜中间隙锌团簇的方法;2) 研究间隙锌团簇的形成和演化机制;3) 制备可重复p型ZnO:N薄膜,研究其导电微观机制;4) 建立间隙锌团簇浓度与p型ZnO:N薄膜导电稳定性随时间及外界环境的变化规律,研究间隙锌团簇对p型ZnO:N薄膜导电稳定性的影响机理。希望通过本项目的研究,为制备高稳定性的p型ZnO提供有效途径和参考。
ZnO在短波长光电子器件领域具有潜在的应用前景,但缺乏稳定的p型ZnO已成为阻碍其应用的巨大瓶颈,也直接导致p型ZnO逐步进入研究低谷。探索影响p型ZnO导电稳定性的决定性因素,是当前国际上亟待解决的重要科学难题。然而,影响p型掺杂及其稳定性的因素较多,ZnO材料的p型掺杂相关问题研究已经从热点话题演变成了难以攻克的冷门领域。尽管如此,项目负责人基于前期多年的研究积累,提出了“间隙锌团簇可能是影响p型ZnO导电稳定性的最具普遍性和决定性的因素”的新观点。在本项目的支持下,我们取得了一系列成果,具体包括:1)进一步明确了ZnO的拉曼光谱中的275cm-1振动模式与锌间隙及其团簇等相关缺陷密不可分,这为研究锌间隙团簇等相关问题提供了强有力的支撑。2)在此基础之上,发现了通过掺杂和后期退火能有效调控锌间隙团簇,并给出了锌间隙团簇形成和演化机制。3)成功制备了p型ZnO:N薄膜,研究发现非轴向分布的NO-VZn浅受主复合体缺陷是p型ZnO:N薄膜导电微观机制。4)结合实验和理论计算,理解了ZnO:N薄膜中锌间隙团簇与N相关受主的热稳定性和相互影响机制,以及p型ZnO:N薄膜中N相关缺陷的热演化行为和稳定性问题,对未来进一步探索和制备高质量的p型N掺杂ZnO材料提供了一定的参考意义。同时,我们也取得了丰硕的科研成果,在国内外知名期刊发表论文20余篇,与本项目直接相关论文10篇,指导或联合指导博士研究生1名,硕士研究生5名,本科生20余名。最后,希望有朝一日宽禁带氧化物材料的p型掺杂问题能得以攻克。
{{i.achievement_title}}
数据更新时间:2023-05-31
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
低轨卫星通信信道分配策略
青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化
Sparse Coding Algorithm with Negentropy and Weighted ℓ1-Norm for Signal Reconstruction
地震作用下岩羊村滑坡稳定性与失稳机制研究
基于间隙N调控的p-ZnO:In-N薄膜导电稳定性研究
基于锌空位调控的N掺杂p型ZnO导电特性及稳定性研究
团簇固溶的高化学稳定性导电Cu合金薄膜
N-Ga共掺p型ZnO薄膜的制备及其性质研究