Pt-based electrocatalysts have exhibited great application potential in some clean energy technologies such as fuel cells and metal-air batteries, however, the shortcomings of high cost and source scarcity have been the biggest limitation for their scale-up production and applications. Although current carbon-based transition metal (e.g., Fe, Co, Ni) materials have been widely investigated and used for electrocatalysis, their catalytic performances are still far away from the requirements of practical applications. The aims of this proposed project are to tackle the above issues by developing a novel vapor phase hydrothermal method utilizing biomass (e.g., crab shells)-derived chitosan with rich surface amino and hydroxyl functional groups as substrate to controllably fabricate highly catalytic active crystal faced transition metal (e.g., Fe, Co, Ni) modified N-doped carbon materials for high efficiency electrocatalysis applications. This project will emphatically investigate the controlled growth role and mechanism of highly catalytic active crystal faces of transition metal (e.g., Fe, Co, Ni) nanostructures using surface functional groups of biomass-derived chitosan as crystal face regulating agents, and reveal and clarify in depth the intrinsic relationships between the electrocatalytic performance and the catalyst material’s structure, composition and specific exposed crystal faces. This project will systematically evaluate the practical application performance of the fabricated electrocatalysts as air cathode materials in zinc-air batteries. The successful implementation of this proposed project will provide a new fabrication means to controllably design and construct low-cost, high-efficiency non-precious metal modified N-doped carbon electrocatalysts, and establish a solid theoretical and practical application foundation of relevant energy technologies.
铂基电催化剂在一些清洁能源技术如燃料电池、金属-空气电池中展示出巨大的应用潜势,然而造价高、资源匮乏的缺点限制了其大规模生产应用。尽管当前碳基过渡金属(如Fe、Co、Ni等)材料已被广泛用作电催化剂研究,但其催化性能距离实际应用还有很大距离。本项目拟采用生物质(如蟹壳等)衍生的表面含有丰富氨基、羟基官能基团的壳聚糖作为基体,发展一种全新的气相水热生长方法可控制备具有高催化活性特定晶面过渡金属(如Fe、Co、Ni等)负载氮掺杂碳材料;重点调查生物质衍生壳聚糖基体表面官能基团在气相水热条件下对过渡金属高催化活性特定晶面的可控生长规律和机制;深入揭示所制备材料电催化活性与催化剂结构、组成、特定暴露晶面的内在关联性,并作为阴极材料在金属(Zn)-空气电池中进行应用评价。本项目的成功实施将为廉价、高效非贵金属负载氮掺杂碳电催化剂的设计和构筑提供新的技术手段,并为相关能源技术的发展和应用奠定基础。
贵金属电催化剂因造价高、资源匮乏的缺点限制了其大规模生产应用。本项目的主要研究内容是以生物质衍生石墨碳为基体,以非贵过渡金属(Fe、Co、Ni等)盐为前驱体,通过气相水热这一特殊合成方法,开发具有高活性晶面过渡金属负载石墨碳电催化剂。具体研究内容包括以下几个方面:(1)发展了一种以过渡金属(Fe、Co、Ni等)盐为前驱体、以石墨碳为基体,合成金属单质、氧化物、硫化物负载的石墨碳基电催化材料,并研究了其在电催化分解水产氢(HER)/产氧(OER)、电催化有机物氧化/加氢还原、电催化氮还原(NRR)等方面的催化性能;(2)发展气相水热法合成碳基过渡金属催化材料,将其应用于电催化有机物氧化/加氢还原。并且将这种气相水热法合成负载型催化剂扩展至其它类金属/非金属催化剂材料的合成中,均取得了成效,说明气相水热法在催化剂材料制备中具有普适性。取得的主要研究进展如下:(1)电化学沉积Pt颗粒负载碳纤维电催化加氢还原对硝基苯酚(PNP)到对氨基苯酚(PAP);(2)气相水热法直接在碳布表面生长NiS2单晶薄膜用于电催化氧化二级醇到酮并同步析氢;(3)氧功能化石墨碳催化剂用于电催化分解水产氧反应;(4) 气相水热法构筑羟基氧化铌纳米颗粒负载碳纤维(Nb3O7(OH)/CFC)用于电催化氮还原反应。本项目的成功实施将为廉价、高效碳基非贵过渡金属电催化剂的设计和构筑提供新的技术手段,并为相关能源技术的发展和应用奠定基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于二维材料的自旋-轨道矩研究进展
二维MXene材料———Ti_3C_2T_x在钠离子电池中的研究进展
上转换纳米材料在光动力疗法中的研究进展
3d过渡金属与贵金属共掺杂CeO2高活性晶面的可控构筑及其催化性能研究
负载型过渡金属硅化物的化学气相沉积可控制备、表征及其催化性能研究
过渡金属单原子负载氮掺杂多孔碳材料的结构设计及电催化还原CO2性能研究
叶酸基金属和氮共掺杂碳材料的可控制备及其电催化还原CO2研究