GaN-based blue laser diodes have been widely used in the information transmission, acquiring, processing, storage and display. This subject will study the behavior and physical mechanisms of stimulated emission, establish a theoretical model of the electrical and optical characteristics of GaN-based laser diodes, optimize the structure of blue laser diodes based on violet laser diodes to reduce absorption loss of p-type layers, study the defect inhibition in the growth process of quantum wells and method of reducing polarization effect to achieve high efficient quantum wells, investigate the compensation mechanism of p-type AlGaN to achieve high efficiency of p-type doping, and develop low-resistance ohmic contact by tunneling junction or InGaN/GaN contact layers. In addition, it will also improve quality and reliability of the cavity facet by cleave-guided groove, enhance heat dissipation by using nano-silver solder, and investigate interaction mechanisms between light field, electrical field, and materials, to resolve problems of reliability in GaN-based blue laser diodes. Finally, we will solve the key scientific and technical problems of GaN-based blue laser diodes, and achieve high-power and long-lifetime blue laser diodes, the power is greater than 500mW, and the lifetime is longer than 5000 hours.
氮化镓基(GaN)蓝光激光器在信息传输、获取、处理、存储和显示等方面有重大需求和广泛应用。本课题将研究GaN基激光器的受激辐射行为和物理机制;建立理论模型研究GaN基激光器的电学特性和发光特性;在GaN紫光激光器的基础上,设计新型GaN蓝光激光器结构,降低p型层中的光损耗;研究量子阱生长过程中缺陷的抑制及减小极化效应方法,实现高效率的量子阱;研究P型AlGaN中的补偿机制,实现高效率P型掺杂;采用隧道结结构或InGaN/GaN表面接触层,制备性能优异的欧姆接触电极;设计解理导向槽,改善激光器解理腔面质量和可靠性,采用纳米银焊料增强激光器的散热;研究激光器中强光场、电场与半导体材料的及掺杂元素的相互作用机制,解决激光器的可靠性问题,最终突破氮化镓基蓝光激光器关键科学和技术问题,研制成功寿命大于5000小时,输出功率大于500mW的蓝光激光器。
氮化镓基蓝光激光器在激光显示、激光照明、激光加工、激光通讯等领域具有重要应用前景。本课题在氮化镓基激光器理论、结构设计、材料的MOCVD生长、芯片制备及可靠性等方面取得进展:.1、以GaN量子阱为研究对象,以能带调控为手段,从理论和实验上研究了GaN量子阱结构和宏观发光性能的关系。分析了在垒层中插入重掺薄层对激光器的光电性能的影响,研究了InGaN量子阱中空穴的输运机制以及量子阱内电子的溢出现象,为研制长寿的激光器提供科学依据。.2、设计了新型激光器结构,基于隧穿结理论的激光器结构的串联电阻下降了59%,内损耗降低了31%。根据应力调控原理的激光器结构的阈值电流下降了19%;基于量子阱具有强的极化效应的量子阱能带为对称性抛物线形和对称性反抛物线形结构的激光器可以提高有源区的发光效率。.3、通过研究MOCVD生长机理,解决了同质外延表面易出现Hill-Lock和表面条纹状的形貌的问题;在含有V形缺陷的InGaN垒层的表面上生长AlGaN层消除了垒层表面的V形缺陷;采用量子阱垒层In组份阶梯式渐变结构改善了大注入电流密度下量子阱发光效率;研究了C杂质并入的机理,降低了AlGaN材料中的C的杂质,提高了其空穴浓度。.4、通过采用P-InGaN/P-GaN的表面接触层结构,在表面形成二维空穴气,获得了性能稳定的P型欧姆接触电极工艺;利用双层光刻胶掩膜技术,激光器脊型结构侧壁刻蚀垂直度得到改进和提高;.5、建立了激光器结温的测试系统和方法、激光器材料的损耗测试系统以及激光器瞬态降温曲线研究激光器失效的方法。研究了激光器退化机制,认为激光器缓慢退化的主要原因是有源区产生了新的非辐射复合中心缺陷,导致激光器发光特性变差,通过变温PL结果进一步确定该缺陷的激活能为10.2 meV;由于晶格失配产生的应变驰豫在波导和光限制层产生缺陷导致光学损耗的增加,斜率效率变小。.6、激光器的性能为:激光器波长大于440nm,激光器输出功率大于500mW,激光器阈值电压小于5伏,激光器斜率效率大于1W/A,激光器的室温连续工作寿命大于5000小时@500mW。
{{i.achievement_title}}
数据更新时间:2023-05-31
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
低轨卫星通信信道分配策略
青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化
Sparse Coding Algorithm with Negentropy and Weighted ℓ1-Norm for Signal Reconstruction
基于FTA-BN模型的页岩气井口装置失效概率分析
氮化镓基激光器的关键科学与技术问题研究
硅基氮化镓蓝光材料生长与器件研究
氮化镓基绿光激光器的应力调控波导研究
高可靠性高量子效率氮化镓基绿光激光器关键技术研究