Biological cells or particles are in various shapes with diverse materials, providing us with abundant resources for construction of complex microstructures with excellent functions, which is difficult to be achieved by the traditional micromachining technology. Diatom cells, which are featured with multi-scaled nanoporous frustules, are one kind of excellent biomechanical materials. This project proposes a novel bio-joining forming technology for construction of complex functional microstructures using diatoms. It is a great scientific and technological challenge to mechanically join of discrete diatoms with high joining strength and no contamination from other materials in the microscale contact interface. Four kinds of bio-joing forming methods are proposed, including vapor HF assisted direct covalent joining, silicon dioxide nanofilm assisted joining, laser assisted joining by high-speed localized chemical vapor deposition, and laser assisted joining by high-speed localized solidification of spin-on glass. By improving the evaluation system for microscale shear and tensile joining strengths, we will penetrate into the relation between the chemical & physical properties of the microscale joining interface and the mechanical joining performances, which is the most important scientific issues of this project. The theoretical system of the bio-joining forming technology will be built. The bio-joining forming technology for diatom structuralization is an inovation from the basis of manufacturing technology, which has a broad prospect in microfludics, nano-optics and electromagnetics.
生物细胞微粒形状丰富、材质多样,为人类提供了丰富的构形资源,经连接可构造出传统微细加工方法无法比拟的生物基复杂功能结构。本项目以多级多层微纳孔隙结构的硅藻为例,以实现硅藻复杂功能结构为目标,提出硅藻结构化生物连接成形方法,挑战硅藻间微纳连接的科学技术难题。为实现不引入其他材质的硅藻接触点局部高强度连接,提出气相氢氟酸辅助共价键直接连接、二氧化硅纳米膜沉积连接、激光束辅助高速定点化学气相沉积连接、激光束辅助旋涂玻璃定点固化连接等四种连接方法;完善硅藻连接抗拉伸和剪切强度的微操作表征平台,研究三维微纳界面下生物连接的界面特征与机械连接性能的关系等关键科学问题;初步建立生物连接成形工艺及理论体系。硅藻结构化生物连接成形是制造方法上的基础性创新,在微流体、微光学、电磁学等方面有重要的应用前景。
生物细胞微粒形状丰富、材质多样,为人类提供了丰富的构形资源,经连接可构造出传统微细加工方法无法比拟的生物基复杂功能结构。本项目以多级多层微纳孔隙结构的硅藻为例,以实现硅藻复杂功能结构为目标,提出硅藻结构化生物连接成形方法,挑战硅藻间微纳连接的科学技术难题。为实现不引入其他材质的硅藻接触点局部高强度连接,研究三维微纳界面下生物连接的界面特征与机械连接性能的关系等关键科学问题。.项目的主要研究内容有:.(1)研究硅藻批量化直接连接工艺与机理,构建硅藻结构化生物连接成形连接强度表征系统。.(2)研究SiO2 中间层高速定点形成机理,实现在硅藻壳体间的同材质中间层间接连接。.(3)硅藻结构化生物连接成形性能表征与综合评价,探索生物连接成形复杂接微结构的工程化应用。.项目整体按原计划进行研究,并取得一下四个方面的进展:硅藻点结构连接成形、硅藻面结构连接成形、硅藻微结构转移技术、硅藻结构化连接的工程应用探索。在这四个方面既有工艺机理的研究,也有对硅藻微结构的表征研究。.本项目执行以来,出版专著1部,发表SCI检索论文4篇,参加国际学术交流2次。硅藻结构化生物连接成形是制造方法上的基础性创新,在微流体、微光学、电磁学等方面有重要的应用前景。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度
基于非线性接触刚度的铰接/锁紧结构动力学建模方法
基于硅藻的生物组装成形基础研究
基于硅藻的生物吸附成形研究
基于微生物的生物生长成形基础研究
多尺度界面的生物聚合成形基础研究