The Li-Mg-B-H system has been considered as a promising hydrogen storage material with high H-capacity and good reversibility. However, the high thermodynamic stability and sluggish re/dehydrogenation kinetics limit its potential application. This project aims to employ functional boron nitride (fBN) to modulate the thermodynamics and kinetics of Li-Mg-B-H simultaneously, thus improve the reversible hydrogen storage properties. Functional porous boron nitride with surface dangling-bond and modification of transition metal compounds (TMC@fBN) can be synthesized by chemical methods such as thermal decomposition and chemical infiltration. At last, Li-Mg-B-H will be nanoconfined by the fBN. Through systematically studying the effects of pore structure and surface dangling-bond of fBN, and composition/particle size/loading amount of TMC on the hydrogen storage properties individually, it is likely to unravel the composition-microstructure-hydrogen storage properties relationship and furthermore their synergistic effect of nanoconfinement, hetero-nucleation and interfacial interactions. Lastly, the optimal design strategy should be established to improve the hydrogen storage properties.The project aims at providing important experiment and theory foundation for developing high performance borohydride hydrogen storage materials, enriching and improving the basic theory of complex metal borohydrides.
Li-Mg-B-H体系因具有较高的储氢容量及良好的可逆性能,被认为是颇具前景的储氢材料。但热力学性质稳定及吸/放氢动力学性能差限制了其实际应用。本项目拟采用功能化氮化硼来同时调变其吸/放氢热力学性质和动力学性能,以显著改善其可逆储氢性能。拟采用热解法结合化学浸渍等方法制备出具有表面悬键并负载过渡金属化合物的功能化多孔氮化硼(TMC@fBN),并以之为载体限域Li-Mg-B-H储氢材料。通过系统研究PBN的孔结构和表面悬键、TMC的成分/粒径/负载量等因素对Li-Mg-B-H吸/放氢性能的影响,揭示材料成分、微观结构与储氢性能间的关联规律,探索纳米限域、预置形核剂及界面交互作用降低稳定性等改性手段间的协同改性效应与改性机制,最终建立储氢材料改性的优化设计策略。本项目为开发高性能Li-Mg-B-H储氢材料,丰富和完善配位金属硼氢化物可逆储氢的基础理论奠定重要的实验与理论基础。
Li-Mg-B-H体系因具有较高的储氢容量及良好的可逆性能,被认为是颇具前景的储氢材料。但热力学性质稳定及吸/放氢动力学性能差限制了其实际应用。本项目拟采用功能化氮化硼来同时调变其吸/放氢热力学性质和动力学性能,以显著改善其可逆储氢性能。拟采用热解法结合化学浸渍等方法制备出具有表面悬键并负载过渡金属化合物的功能化多孔氮化硼(TMC@fBN),并以之为载体限域Li-Mg-B-H储氢材料。通过系统研究PBN的孔结构和表面悬键、TMC的成分/粒径/负载量等因素对Li-Mg-B-H吸/放氢性能的影响,揭示材料成分、微观结构与储氢性能间的关联规律,探索纳米限域、预置形核剂及界面交互作用降低稳定性等改性手段间的协同改性效应与改性机制,最终建立储氢材料改性的优化设计策略。本项目为开发高性能Li-Mg-B-H储氢材料,丰富和完善配位金属硼氢化物可逆储氢的基础理论奠定重要的实验与理论基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
农超对接模式中利益分配问题研究
面向云工作流安全的任务调度方法
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
基于细粒度词表示的命名实体识别研究
功能纳米化协同效应改善硼氮基氢化物可逆储氢性能研究
燃料电池轻质可逆储氢体系的研究
改性多孔碳材料对MgH2和Li-Mg-B-H体系储氢性能的影响及机理
新型氨硼烷基储氢材料制备及其储氢性能与机理研究