Rho family proteins are highly associated with the development of cardiovascular and cerebrovascular diseases. As the key protein in regulating the function of Rho signaling, Rho-associated protein kinases (ROCKs) have become important targets for developing cardiovascular and cerebrovascular drugs. At present, a few ROCK inhibitors with novel structures are reported, but most of them are not ideal lead compounds for further drug development. Fasudil and Ripasudil are the only two marketed ROCK inhibitors, which are clinically utilized as the treatments of cerebral vasospasm induced by subarachnoid hemorrhage and glaucoma, respectively. Therefore, discovery and design of new ROCK inhibitors play vital roles in exploring new therapeutic strategies against cardiovascular and cerebrovascular diseases. In our previous work, multiple novel and potent ROCK inhibitors have been discovered effective in treating and preventing cerebral hemorrhage. In this project, we plan to develop high-precision MIEC-SVM virtual screening models and computational methods for predicting binding free energy. Based on the constructed models, in vitro activity and zebrafish experimental models, we hope to design and optimize two ROCK inhibitors (TH004 and TS-15) discovered in our previous study, and to analyze the quantitative structure-activity relationships (QSARs). Those candidates with high inhibitory activity against ROCK would be selected and submitted to preliminary assessment of in vivo pharmacokinetics and toxicity. Further in vivo therapeutic efficacy would also be assessed in atorvastatin-induced cerebral hemorrhage in rats. At last, the molecular mechanism and characteristics of enzyme kinetics would be finally investigated. This project will lay a solid foundation for developing both therapeutic and preventive drugs of hemorrhagic stroke and cerebral hemorrhage.
作为调控Rho功能的关键蛋白,Rho激酶(ROCK)与心脑血管疾病的发生发展有着密切的关系,是心脑血管疾病药物开发的重要靶点,因此发现和设计新型ROCK抑制剂,并探索其心脑血管疾病治疗效果具有重要的意义。申请人长期围绕ROCK开展了系统的分子模拟、药物设计和药效学研究,成功发现了多类结构新颖且能有效治疗和预防脑出血的ROCK抑制剂。本项目拟在前期工作的基础上,首先发展针对ROCK的高精度MIEC-SVM个性化虚拟筛选模型及自由能预测方法;然后采用发展的模型和方法,并结合体外活性评价以及斑马鱼活性评价对申请人前期发现的两个具有全新骨架结构的ROCK抑制剂(TH004和TS-15)进行结构优化,并总结其定量构效关系;选择若干高活性的ROCK抑制剂进行初步的药代和毒性评价,并采用阿托伐他汀诱导的大鼠颅内出血模型评价其对脑出血的治疗效果。本项目将为出血性脑中风治疗和预防药物的开发打下坚实的基础。
脑中风(又称脑卒中)是对急性脑血管疾病的统称,是指在脑血管疾病的病人,因各种诱发因素引起脑内动脉狭窄,闭塞或破裂,而造成急性脑血液循环障碍和永久性脑神经损伤、进而引发并发症甚至死亡。作为调控Rho功能的关键蛋白,Rho激酶(ROCK)与心脑血管疾病的发生发展有着密切的关系,是心脑血管疾病药物开发的重要靶点,因此发现和设计新型ROCK抑制剂,并探索其心脑血管疾病治疗效果具有重要的意义。本项目在前期工作的基础上,首先发展针对ROCK的高精度MIEC-SVM个性化虚拟筛选模型及自由能预测方法;然后采用发展的模型和方法,并结合体外活性评价以及斑马鱼活性评价对申请人前期发现的两个具有全新骨架结构的ROCK抑制剂(TH004和TS-15)进行结构优化,并总结其定量构效关系;选择若干高活性的ROCK抑制剂进行初步的药代和毒性评价,并采用阿托伐他汀诱导的大鼠颅内出血模型评价其对脑出血的治疗效果。在本项目的资助下,共发表SCI研究论文21篇。本项目将为出血性脑中风治疗和预防药物的开发打下坚实的基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于全模式全聚焦方法的裂纹超声成像定量检测
PI3K-AKT-mTOR通路对骨肉瘤细胞顺铂耐药性的影响及其机制
湖北某地新生儿神经管畸形的病例对照研究
线粒体自噬的调控分子在不同病生理 过程中的作用机制研究进展
基于关系对齐的汉语虚词抽象语义表示与分析
新型CRM1抑制剂的设计和制备以及对ENKTL淋巴瘤治疗机制与效果的研究
高活性的、ROCK2/1亚型选择性的ROCK2抑制剂的设计与合成研究
STAT3 CCD结构域的新型抗肿瘤抑制剂的设计优化和功能研究
新型微管蛋白抑制剂的优化设计、合成及抗肿瘤活性研究