Based on the as-prepared metatitanic acid and lithium hydrogen titanate electrode materials with excellent long cycling life and high rate performance, the current research will systematically discuss the effect of preparation technology parameters on the composition, microstructure, morphology and electrochemical properties of Li-H-Ti-O system, and further optimize the preparation technology of materials. Meanwhile, in order to explore the Li-H-Ti-O system materials with excellent electrochemical performance, the change regulation of Li-H-Ti-O materials during different electrochemical lithium intercalation processes will be further studied. The relationship and influencing regularities among hydrogen atom, lithium atom, electrochemical properties and energy storage mechanism of Li-H-Ti-O system materials will be systematically elucidated by analyzing the change of state before/after electrochemical reaction and combining in-situ analysis methods and analog computation based on chemical composition and bonding state, and finally the intrinsical and universal characteristics will be discovered. Moreover, the design and preparation technology of lithium hydrogen titanate will open up a new route to modify the electrode materials, and lead to an important influence on new energy, novel materials and energy-saving, environmental protection industry fields. The optimal design of Li-H-Ti-O electrode materials with excellent long cycling life and high rate performance will make significant social and economic benefit by promoting the application of high-performance power batteries.
本项目基于具有超长循环寿命高倍率的偏钛酸及钛酸氢锂电极材料,系统研究制备工艺参数对Li-H-Ti-O体系组成、结构、形貌以及电化学性能的影响,优化制备工艺,深入研究材料的组成与结构在不同的电化学嵌锂过程的状态变化规律,并探索具有优异电化学性能的Li-H-Ti-O体系材料。从材料的基本化学组成和键合状态入手,通过表征材料在电化学反应前后的状态变化,并结合一定的原位分析手段及材料模拟计算,系统解析氢原子及锂原子与Li-H-Ti-O体系材料组成、结构、电化学性能及储能机理的相互关系和影响规律,寻找其本质性、普适性的特征。此外,钛酸氢锂材料设计思想与制备工艺开拓了电极材料改性新路线,对新能源、新材料以及节能环保产业领域均具有重要的影响及指导意义。与此同时,进行超长循环寿命、高倍率Li-H-Ti-O体系电极材料的优化设计,对推动高性能动力电池研究向应用转化具有重要的社会经济效益。
本项目针对限制钛基电极材料实际应用的低电导率和低比容量两项难题,以层状钛酸纳米材料为基础,采用一种基于脱水相变原位生长纳米晶(ODIN)的方法设计并制备了一系列具有超长寿命、高倍率性能的Li-H-Ti-O体系新型电极材料。系统研究了工艺参数对Li-H-Ti-O体系材料的组成、结构、形貌以及电化学性能的影响,深入探究了材料在电化学反应过程中的储能机制,并进行了高性能钛基负极材料的设计、优化和性能研究。利用同步辐射光源对材料制备过程和电化学反应过程进行原位观测分析,系统解析氢组分(或者水)对Li-H-Ti-O体系材料组成、结构、电化学性能及储能机理的相互关系和影响规律。结果表明,氢组分的引入不仅维持了二维层状晶体结构的稳定性,并在此基础上,产生了大量的晶格缺陷,诱发了纳米结构单元的原位生长,从而显著提高了电极材料的离子扩散系数。以ODIN方法进行氢组分引入的设计思想为指导,拓展到Li-Mn-O和Li-V-O体系中,制备了具有高倍率性能和长循环稳定性的Li-H-Mn-O和Li-H-V-O体系材料,再次验证了氢组分在提高电极材料电导方面的本质性、普适性规律。通过与合金型/转化型材料复合的策略来对钛基材料进行改性,成功设计并制备了具有高容量的合金型/转化型钛基多级结构电极材料。所进行的高性能钛基体系电极材料的设计思想与制备工艺不仅开拓了电极材料的改性新路线,在新能源、新材料以及节能环保领域有着重要影响及指导意义;同时对其他含氢组分的过渡金属化合物体系在能源材料领域的应用提供了较大的启发与指导依据;还在推动高性能动力电池研究向应用转化方面具有重要的社会经济效益。
{{i.achievement_title}}
数据更新时间:2023-05-31
Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation
Intensive photocatalytic activity enhancement of Bi5O7I via coupling with band structure and content adjustable BiOBrxI1-x
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
An alternative conformation of human TrpRS suggests a role of zinc in activating non-enzymatic function
Engineering Leaf-Like UiO-66-SO_3H Membranes for Selective Transport of Cations
高容量/高倍率碳素电极的自组装制备及其储能机理研究
超长循环寿命的强耦合二硫化钨-纳米碳复合材料的构筑及储钠机理研究
水溶液Zn基可充电化学储能电极材料及体系研究
基于二维MXene材料液晶自组装设计电极材料及其储能机理研究