With the development of electronic equipments and their multi-functional applications, “smart” energy storage devices are playing an increasingly important role in people's daily lives or some special fields because they are ultra-light, ultrathin, transparent, stretchable, and even compression-tolerant. Comparing to other electrochemical energy storage devices, supercapacitors have been become one of the research hotspots in the “smart” energy storage fields owing to their attractive characteristics such as high power density, short charge time, long life, and so on. So far, common supercapacitors that are made up of macroscopic two-dimensional flat elements, have encountered several problems during their practical “smart” applications, such as high power densities but low energy density, mechanical instability of electrochemical performances, low mechanical deformation strength, and short mechanical cycling life. Thus, to solve these problems above, we have proposed in this project a design of three-dimensional energy storage devices constructed by the microscale assembly of each component using smart substrates..1) To increase a dimension is able to prepare supercapacitors with both high power densities and high energy densities..2) Microscale assembly can not only enhance the stability in the devices’ electrochemical performances when the devices are encountering dramatic changes in their macro-scale size, but also improve the mechanical properties and life time of the devices when the aggregated internal stress of electrodes are releasing..This project will provide a scientific theoretical guidance and a feasible idea for the preparation of supercapacitors in “smart” energy storage fields.
随着电子设备及其多功能化应用的发展,智能化储能器件由于具有柔性、透明、弹性可拉伸等优点在人们的日常生活或某些专项领域发挥着日益重要的作用。相比于其他电化学储能器件,超级电容器因其功率密度高、充电速率快、寿命长等优点,已成为智能化储能器件领域的研究热点。目前,宏观二维平面组装构建的超级电容器件在智能化应用过程中出现功率密度与能量密度不能兼得,及电化学性能不稳定、机械形变强度低、寿命短等问题。基于此,本项目提出一种基于器件组元的微观组装的三维超级电容器件设计(三维储能器件):1)增加一个维度可以解决超级电容的能量密度与功率密度不能兼得问题,2)微观组装设计不仅可增强器件在其宏观尺度的剧烈变化下的电化学性能稳定性,还可缓解电极内部应力聚集和释放引起的器件机械性能差和寿命短问题。本项目的研究将为面向智能化应用的储能电容器的制备提供科学依据和设计思路。
超级电容器由于其功率密度高、充放电速率快、循环寿命长等优点,逐步成为智能化储能器件领域的研究热点。目前商业化的超级电容器能量密度远低于锂离子电池,因为其储能主要依靠电极材料表层的界面反应。因此,超级电容器电极材料需要合理的三维设计,以增大电解质与电极的接触面积,从而增加界面反应,提高其性能。超级电容器电极材料主要有碳材料、金属氧化物、导电聚合物等等。基于碳材料的双电层超级电容器,其储能机制主要是物理吸附离子,故其能量密度较低,而基于金属氧化物等的赝电容器,是通过氧化还原反应储能,其能量密度虽然有所提高,但是功率密度不如双电层电容器。针对超级电容器功率密度和能量密度不能同时兼得的问题,我们通过对电容器材料的三维结构设计和改性,优化器件的性能。主要成果有:.1)通过对商业的三聚氰胺泡沫进行一步碳化,制备出氮掺杂的、可压缩的、可弯曲的、电化学性能较高的三维泡沫碳,并且研究了碳化温度对三维泡沫碳性能的影响。适当的碳化温度为三维泡沫碳提供良好的机械性能,在压缩和弯曲过程中仍然能保持良好的电化学性能。氮的掺杂为泡沫碳提供了一部分赝电容,提高了材料的比电容,在0.5A/g电流密度下比电容高达221F/g,当电流密度增加到50A/g时,比电容仍然有100F/g。.2)通过静电纺丝并碳化制备自支撑碳纤维片CNF,然后用CVD法在碳纤维表面生长碳纳米管CNT,制备出CNT-CNF复合材料。用KOH高温活化处理CNT-CNF,在700-750℃下,KOH活化90min,CNT-CNF复合电极的尖端完全张开,比表面积提高299.5m2/g(约为原始电极的5倍),比电容提高3-4倍。.3)引入了一种电化学活化方法来改善MnO2@CNTs的电化学性能。在电化学活化过程中,溅射后的MnO2薄膜可以重构并形成3D纳米片结构,并伴随有电解液离子的嵌入。经过放电电流密度为10mA/cm2电化学活化的MnO2,在电流密度为0.5A/g时,比电容为404F/g,在100A/g时,电容仍然能保持78.7%。
{{i.achievement_title}}
数据更新时间:2023-05-31
硬件木马:关键问题研究进展及新动向
滚动直线导轨副静刚度试验装置设计
基于混合优化方法的大口径主镜设计
变可信度近似模型及其在复杂装备优化设计中的应用研究进展
不确定失效阈值影响下考虑设备剩余寿命预测信息的最优替换策略
新型富酚电极的设计合成与超级电容器储能性能
多尺度模拟离子液体/MXene相互作用和储能机制及超级电容器的应用
混合型电池-电容储能器件的性能调控及其储能机理的研究
基于蓄电池和超级电容器的微型电网复合储能系统研究