Due to the difficulty in utilizing the low-temperature waste heat of distributed energy systems, low temperature waste heat dehumidifier in distributed energy systems and its integration mechanism will be researched in this project. Combined with engineering thermal physics discipline and chemical discipline, indirect dehumidification mechanism of membrane will be explored, including the preparation and characterization methods of high hydrophobicity, high permeability, high stain resistance dehumidification membrane, to build the theories and thermodynamic performance evaluation criteria of the membrane indirect dehumidification. The two-phase flow coupled heat and mass transfer's characteristics and strengthening mechanism of dehumidification process will be researched, energy storage regulation characteristics of dehumidification solution will be studied, and each unit process's heat and mass transfer characteristics of the multi-level, multi - liquid desiccant system will be explored. The research of solution strengthening mechanism of energy storage is very important to adjust the total working conditions performance of the distributed energy systems. .On this basis, the liquid desiccant experimental device will be developed which is driven by the internal combustion engine jacket water and low-temperature flue gas, docking with the distributed energy system experimental platform. Efficient collaborative control mechanism of total working conditions and integration of distributed energy systems will be tested and refined, which based on dehumidification of the low temperature waste heat. Integration theories and methods of energy storage multi-stage cycle liquid desiccant systems will be build, driven by low and variable temperature.The results of this project will promote the discipline cross, and pioneer a new direction for distributed energy systems , new methods and systems will be provided to meet a major demand of the national energy saving.
本项目针对传统分布式能源系统低品位余热无法高效回收利用的难题,开展低温余热除湿的分布式能源系统及其集成机理研究。在工程热物理学科与化工学科的综合层面,探索膜法间接除湿机理,研究高疏水性、高透湿性、高抗污性除湿膜制备与表征方法,构建膜法间接除湿理论及其热力学性能评价准则;研究除湿过程气液两相流耦合传热传质特性及其强化机理,研究除湿溶液的蓄能调节特性,研究多级、多溶液除湿系统各单元过程的传热传质特性;研究溶液蓄能对分布式能源系统全工况性能强化机理。在此基础上,研制内燃机缸套水及低温烟气联合驱动的液体除湿实验装置,并与分布式能源系统实验平台对接,验证并完善基于低温动力余热除湿的分布式能源系统集成及全工况高效协同控制机理,构建低温变温热源驱动的蓄能型多级循环液体除湿系统集成理论与方法。本项目研究成果将促进学科交叉,开拓分布式能源系统研究新方向,为满足国家节能减排的重大需求提供新方法和新系统。
本项目针对传统分布式能源系统低品位余热无法高效回收利用的难题,开展低温余热除湿的分布式能源系统及其集成机理研究。在工程热物理学科与化工学科的综合层.面,探索膜法间接除湿机理,研究高疏水性、高透湿性、高抗污性除湿膜制备与表征方法,构建膜法间接除湿理论及其热力学性能评价准则;研究除湿过程气液两相流耦合传热传质特性及其强化机理,研究除湿溶液的蓄能调节特性,研究多级、多溶液除湿系统各单元过程的传热传质特性;研究溶液蓄能对分布式能源系统全工况性能强化机理。在此基础上,研制内燃机缸套水及低温烟气联合驱动的液体除湿实验装置,并与分布式能源系统实验平台对接,验证并完善基于低温动力余热除湿的分布式能源系统集成及全工况高效协同控制机理,构建低温变温热源驱动的蓄能型多级循环液体除湿系统集成理论与方法。本项目研究成果将促进学科交叉,开拓分布式能源系统研究新方向,为满足国家节能减排的重大需求提供新方法和新系统。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
拥堵路网交通流均衡分配模型
卫生系统韧性研究概况及其展望
面向云工作流安全的任务调度方法
天津市农民工职业性肌肉骨骼疾患的患病及影响因素分析
基于加湿除湿海水淡化方法的分布式水电联产系统集成机理研究
多能源互补分布式供能系统的集成优化与协同控制研究
低温余热回用-多效蒸发处理含盐污水集成工艺关键因子调控
溶液除湿脱盐一体化机理与系统集成方法研究