Dynamic response characteristics of the planetary roller screw mechanism (PRSM) is an important index to measure the transmission quality, which is also an important basis for the study of fatigue life and reliability. Aiming at reveal the dynamic contact characteristics of multi-pairs meshing and coupling mechanism of system vibration for the PRSM, the theoretical and experimental studies of PRSM will be performed, in which the error coupling mechanism of thread-gear pairs synchronous meshing, the contact characteristics of thread-gear pairs with multi-bodies, multi-pairs and multi-points and coupling mechanism between dynamic contact and system vibration, and a quantitative control method for the low vibration of thread-gear pairs associated with multiple parameters will be taken into consideration. Firstly, the error analysis of thread-gear pairs will be emphatically carried out, and error coupling mechanism of the two meshing pairs will be further revealed. Secondly, a dynamic contact model of thread-gear pairs synchronous meshing will be established based on the finite element method and analytical contact mechanics. Then, a dynamic coupling model between multi-pairs dynamic contact and system multi-bodies vibration will be built based on the idea of generalized finite element. The interaction mechanism of excitation - response - feedback and the essence of nonlinear dynamic response of PRSM will be further revealed. Finally, experimental studies on the dynamic contact characteristics and vibration of PRSM will be carried out to testify the validity of the proposed models, and the quantitative control methods of vibration suppression will be further formed. The achievements of this project will provide theoretical basis for the design and development of PRSM with excellent dynamic transmission performance.
行星滚柱丝杠副(PRSM)动态响应特性是衡量其传动品质优劣的重要指标,也是研究疲劳寿命和可靠性的重要基础。本项目以揭示PRSM多副啮合动态接触特性与系统振动耦合机理为目标,围绕螺纹副-齿轮副同步啮合误差耦合作用机理、多体多副多点动态接触特性与系统振动响应间的耦合关系及多参数关联的螺纹副-齿轮副低振运转定量化控制方法等科学问题,开展理论与试验研究。首先,根据PRSM多副啮合关系,重点开展螺纹副-齿轮副误差分析,揭示两啮合副误差耦合机理。其次,结合有限元法与解析接触力学,建立含误差的多副动态接触模型。接着,基于广义有限元思想,构建多副动态接触与系统多体振动耦合模型,揭示激励-响应-反馈相互影响机制及系统非线性振动响应的内在本质。最后,开展动态接触和振动性能试验,验证所建模型的正确性和有效性,进一步形成振动抑制定量化控制方法。项目研究成果将为设计并研制出具有优良传动性能的PRSM奠定理论基础。
行星滚柱丝杠(PRSM)是一种可将旋转运动转换为直线运动的精密机械传动机构,作为机电伺服系统不可或缺的执行机构,在有限安装空间下实现大推力、高精度、快响应等方面具有不可替代性,可满足我国军民行业机械装备全电化发展的紧迫需求。.本项目提出开展PRSM多副啮合动态接触特性和系统振动耦合机理研究,针对两类啮合副分别进行加工和装配误差分析,建立了PRSM综合误差模型,揭示了两类啮合副误差耦合机理。基于变形协调力平衡关系,采用有限元法和接触力学理论建立了螺纹副-齿轮副动态接触模型,获取了动态载荷和接触应力分布以及传递误差等振动激励。构建了动态接触和系统振动耦合模型,阐明了误差激励与系统振动响应之间的耦合机理。最后,开展了传动误差和振动特性试验研究,在验证模型的基础上从参数设计和制造工艺的角度提出了振动抑制定量化控制方法。.研究结果表明,相比于滚柱和螺母,丝杠综合误差是导致机构传动误差波动的主因。对传动误差有影响的各误差项中,内齿圈和滚柱齿的相位误差灵敏度系数为别为14.2%和6.3%,因此需保证两端内齿圈装配相位的一致性。在螺纹副-齿轮副同步啮合动态接触方面,丝杠转速增大,齿轮副和滚柱轴端与保持架接触载荷曲线波动周期性减小,螺纹副稳态接触载荷受螺纹副-齿轮副同步啮合及齿轮副啮合激励的共同影响呈现微幅波动;随着螺母负载增大,螺纹副和保持架分担了齿轮副部分载荷,导致齿轮副接触载荷减小。通过集中质量法建立了系统弯扭耦合动力学模型,研究结果表明螺纹接触为连续多点接触,不存在啮入啮出现象,而齿轮副的刚度激励对系统动态啮合及振动特性产生了显著影响。试验研究中对不同制造精度的传动误差进行测量,验证了误差耦合模型和动态啮合响应规律,通过控制滚柱偏斜误差和齿侧间隙达到G5级以上精度可显著降低系统振动。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
内点最大化与冗余点控制的小型无人机遥感图像配准
钢筋混凝土带翼缘剪力墙破坏机理研究
基于二维材料的自旋-轨道矩研究进展
滚动直线导轨副静刚度试验装置设计
行星滚柱丝杠副动刚度与传动精度耦合机理研究
多工况多误差行星滚柱丝杠螺旋曲面弹性啮合传动机理研究
行星滚柱丝杠副滚柱全参数精密测量方法研究
行星滚柱丝杠副摩擦机理与传动效率的理论和实验研究