The ankle and hindfoot joints complex had the highest rate of injuries in the human locomation system. Our preliminary researches had revealed that the this joint complex was much more complicated than the hip and knee joints due to the multi-plane physiological motions and the coupling mechanism in terms of time, space and internal stress distributions. Previously, the in vitro, static or quasi-dynamic studies could hardly reflect its real biomechanical characteristics during the physiological and dynamic conditions. Therefore, the clinical challenges such as post-traumatic ankle instability, flatfoot deformity and ankle joint prosthesis still had no breakthrough. We have successfully modified the dual-orthogonal fluoroscopic imaging system which could accurately measure the in vivo kinematics of the small joints on foot and ankle under dynamic environment. Based on this modified system, the current program aiming to obtain the precise in vivo kinematics of the ankle and hindfoot joints complex. Moreover, combined with synchronized kinetic measurement devices, the successive data of joint internal stress distribution would be measured with the establishment of dynamic finite element models. A systematic in vivo biomechanical database of the joints complex would be built then and their coupling mechanisms during various physiological motions would be analyzed. We will strictly include the most controversial clinical pathologies to reveal their coupling mechanism changes during disease progressions through the in vivo and dynamic biomechanical analysis. The etiology of these pathologies and the efficiency of current treatments would be demonstrated based on the in vivo biomechanical evidences. This will provide theoretical support for improvement of clinical treatments.
所有运动系统损伤中,踝足四关节损伤最为常见。我们前期研究发现四关节存在多平面生理运动,并在时、空、力上相互偶联,远较髋膝关节复杂。以往静态、准动态及尸体环境下的实验很难反映四关节在活体、动态情况下的复杂运动,更不能反映其内在的偶联机制,这使得踝关节创伤后不稳、平足症及人工踝关节假体等难题至今无法突破。我们前期优化了双平面透视匹配系统,使其适用于踝足部小关节的在体、动态三维运动测量。本项目基于该优化系统,采集四关节在活体内及各种生理运动状态下的三维运动全过程;将同步化三维力学采集整合于该系统中,实现在体动态有限元模型的建立及四关节内部应力的连续分析。以此建立踝足四关节连续、完整的在体动态生物力学数据库,重点分析踝足四关节在时、空、力上的偶联机制;针对上述的四关节临床难点进行研究,以活体、生理状态下的生物力学证据分析疾病发展过程中四关节偶联机制及其病理变化,为临床治疗改进提供理论依据。
所有运动系统损伤中,踝足四关节损伤最为常见。我们前期研究发现四关节存在多平面生理运动,并在时、空、力上相互偶联,远较髋膝关节复杂。以往静态、准动态及尸体环境下的实验很难反映四关节在活体、动态情况下的复杂运动,更不能反映其内在的偶联机制,这使得踝关节创伤后不稳、平足症及人工踝关节假体等难题至今无法突破。.项目组前期在国内最早将双平面透视匹配技术用于足踝关节三维在体运动分析,在本项目资助下项目组通过与哈佛大学生物工程实验室合作,进一步完善了双平面透视匹配技术,形成了完整的技术流程与系统,开发了适用于足踝小关节的快速匹配软件。通过实验检测发现该系统对踝足四关节三维运动检测的平移精度达到0.67mm,旋转精度达到0.24°,与国际同类技术达到同步水平,相关发表于SCI杂志J orthop Surg Res;.本项目探索了踝足四关节动态偶联机制。实验发现距舟关节是踝足四关节联动的关键因素,距下关节活动丢失将直接导致踝足四关节偶联机制的破坏;同时研究发现踝足四关节之间存在同时同相三维运动偶联机制,对传统后足关节锁定机制提出质疑,发表在国际生物力学权威杂志Gait Posture上;.本项目进一步探索了平足患者的踝足四关节病理机制,研究发现平足患者距下关节及距舟关节在步态过程中存在过度运动,可能是导致平足患者中期站立相足弓塌陷的主要原因之一,相关成果发表于权威生物力学杂志J Orthop Res上;项目同时研究了高跟鞋对踝足四关节的三维运动影响,结果发现5cm以上高跟鞋对踝关节及后足三关节均产生显著影响,相关研究结果发表于生物力学杂志J Eelctro Kines。.本项目总体达到预期目标,成功阐述了踝足四关节的在体偶联机制及病理运动机制。相关成果具有重要临床指导意义。对青少年平足畸形、成年人获得性平足、高弓马蹄内翻足的支具保守治疗及手术术式改良具有理论指导意义。同时本项目所开发的高精度双平面透视匹配系统能够进一步应用于足踝部疾病的生物力学机制探索。
{{i.achievement_title}}
数据更新时间:2023-05-31
农超对接模式中利益分配问题研究
面向云工作流安全的任务调度方法
基于细粒度词表示的命名实体识别研究
当归补血汤促进异体移植的肌卫星细胞存活
基于图卷积网络的归纳式微博谣言检测新方法
基于踝后足四关节时空力偶联机制的智能辅具仿生优化研究
足踝支撑对膝关节的生物力学影响
基于MR成像的足和踝精细解剖及损伤机制研究
人体足踝步态仿真的理论和方法研究