This study proposes that the self-assembly of uranyl-coordination supramolecular polymers (USP) can be realized by utilizing the specific property of uranyl that it can combine easily both a tetradentate ligand and a monodentate ligand synchronously. The self-assembly of USP can make the system emits strong resonance light scattering, and can also become the signal amplification process of some substances. Based on this, this study intends to synthesize some complexes of uranyl with ditopic teradentate ligand (U-DTL) for the specific recognition of target analytes or their relative substances, and then establish the resonance light scattering analysis based on the self-assembly of USP resulted from the reaction of U-DTL with ditopic mono-dentate ligand for the determination of the target analytes including uranyl, fructose-1,6-diphosphate, ribulose-1,5-bisphosphate,glucosamine-6-phosphate, phosphofructokinase and phosphatase. This study also intends to prepare some functionalized solid phase carriers (including magnetoelastic sensing foil), U-DTL and tetratopic monodentate ligand for the usage in signal amplication analysis based on the self-assembly of USP. In a detection process, after the target analyte or its relative substance is attached on the surface of the functionalized carrier, let it combines U-DTL firstly and then tetratopic monodentate ligand cyclically to make the self-assembly of tree-type USP on the surface of carrier occurs, resulting in a signal amplification of the analyte. The amplified amount of signal rises along with the cyclical times according to geometric series and is controllable. Then detect the amount of the USP bound on the surface of carrier by fluorescence method and wireless sensing method, respectively. Thus the signal amplification analysis based on the self-assembly of USP can be established for the determination of target analytes including fructose-1,6-diphosphate, ribulose-1,5-bisphosphate, glucosamine-6-phosphate, phosphofructokinase and phosphatase. These analytical methods have the advantages of good selectivity, high sensitivity and simple and convenient operation. This study can enrich the research fields in the uranium application, analytical science and supramolecular polymers.
本研究提出利用铀酰易于同时结合四齿配体和单齿配体的特点,可实现铀酰配位超分子聚合物(USP)的自组装。USP自组装可使体系产生强烈共振光散射并可成为一些物质的信号放大过程。据此,拟合成一些铀酰与双极四齿配体的配合物(U-DTL)用于特异性识别目标分析物或与其相关物质,利用基于U-DTL与双极单齿配体反应的USP自组装建立测定铀酰等6种分析物的共振光散射分析法。同时拟制备用于USP自组装信号放大分析的功能化固相载体(包括磁弹性传感片)、U-DTL和四极单齿配体。检测时将目标分析物或相关物质结合到固相载体上,再依次与U-DTL和四极单齿配体循环结合进行树型USP自组装。信号放大量随循环次数成几何级数增长并可控。用荧光法和无线传感法检测固相表面USP的量,由此建立测定磷酸酯酶等5种分析物的USP自组装信号放大分析法。这些方法选择性好并灵敏简便。本研究可丰富铀应用、分析科学和超分子聚合物研究领域。
本项目根据铀酰易于同时结合四齿配体和单齿配体而实现铀酰配位超分子聚合物(USP)和聚集体(USA)的自组装,从而可使体系产生强烈共振光散射(RLS)并可成为一些物质的信号放大过程的事实,研究合成了一些配体及其铀酰配合物,并用之建立了一些RLS 和信号放大分析方法。RLS法基于USP的直接自组装而建立。已建方法包括分别用磷酸吡哆醛缩邻苯二胺和磷酸乙醇胺缩羧基salophen作铀酰配体以及同时用磺基salophen和乙二酸作铀酰配体测定铀的三种方法,用铀酰与双-salophen的双核配合物(BUBS)与分析物反应分别测定1,6-二磷酸果糖(F-1,6-BP)、1,5-二磷酸核酮糖(R-1,5-BP)和6-磷酸氨基葡萄糖(G-6-P)的方法,用焦磷酸作BUBS中铀酰的配体测定氟离子的方法等。信号放大法则借助固相载体进行USA自组装并使用不同检测手段而建立。已建方法包括以磁弹性传感片上salophen和Fe3O4纳米粒子上磷酸基团为铀酰配体测定铀的无线传感法,以AuNPs上salophen和分析物为铀酰配体分别测定F-1,6-BP、R-1,5-BP和G-6-P的RLS法,用玻片上配合物铀酰-salophen(US)和荧光标记US(USF)与分析物反应分别测定F-1,6-BP、R-1,5-BP和G-6-P的荧光法,用AuNPs上核酸适体和铀与BSS的双核配合物BUBSS与三磷酸腺苷(ATP)反应测定ATP的RLS法,用玻片上分子印迹膜和USF与ATP反应测定ATP的荧光法,用AuNPs和BUBSS与辅酶A反应测定辅酶A的比率比色法等。这些方法均具有选择性好、灵敏度高且简便的特点。这些研究成果扩展了铀的用途,丰富了铀应用、分析科学和超分子科学研究领域。本项目现已发表学术论文17篇,其中SCI收录13篇,另外还有一些研究成果在论文投稿审理和论文撰写中。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
农超对接模式中利益分配问题研究
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
基于分形维数和支持向量机的串联电弧故障诊断方法
Himawari-8/AHI红外光谱资料降水信号识别与反演初步应用研究
基于铀的双受体夹心标记配位分析法研究
耦联酶催化反应共振散射光谱分析法研究
基于“马鞍型”环八四噻吩的配位超分子组装及其手性研究
基于阴离子配位的手性超分子体系的构筑与多级组装