With the rapid increase of the space projects and the flight missions, the flight failures due to severe pyro-shock environment occurs frequently in these years. The flight accidents endanger the economic, national defense and people’s life, and thus the reliability of the space equipment under pyro-shock environment receives extensive attention. Now the assessment of the shock environment adaptability of the space equipment mainly relies on large amount of ‘try and error’ shock tests, although we lack the knowledge of dynamic damage mechanism and quantitative evaluation of the pyro-shock damage. As a result, the test assessment has great uncertainty, and result in many problems such as high development costs and massive dependence on imported electronic components. In order to reduce the development costs and time, and at the same time to ensure high reliability, dynamic damage mechanism and failure criterion of space equipment under severe pyro-shock environment should be investigated as soon as possible. This project aims to combine the method of theoretical analysis, numerical simulation, and experiment verification together to systematically investigate the damage mechanism of the space equipment under pyro-shock environment. The damage mechanics model and engineering characteristic sampling library of typical components and heterogeneous interfaces of space equipment will be established. The damage quantitative evaluation methods will be studied, and the reliable and applicative failure criterions will be established for space equipment correspondent to different failure modes. This project can provide important theoretical foundations for damage assessment and protection of space equipment, and has great significance on theoretical research and engineering application.
随着航天型号谱系的快速发展和发射密度的逐年提高,火工品强冲击环境导致的飞行事故频发,危及经济、国防和人民生命安全,因而航天设备的冲击可靠性受到广泛关注。目前航天设备依靠大量“试错”式地面冲击试验进行飞行前环境考核,由于缺乏对火工品冲击损伤机理和定量评估的认识,试验考核有很大的不确定性,衍生出研制成本高、严重依赖进口元器件等诸多问题。为降低产品研制成本、缩短研制周期,同时确保航天器高可靠性,需要尽快开展航天设备在火工品强冲击环境下的动态损伤机理和失效准则研究。本项目拟结合理论分析、数值仿真和试验验证的方法,系统研究航天设备火工品强冲击环境的损伤机理,建立航天设备典型元器件和异质界面的损伤力学模型和工程特征样本库;研究火工品冲击环境损伤定量评估方法,建立可靠、适用的航天设备各类失效模式对应的失效准则。本项目为航天设备冲击环境损伤评估和防护提供重要的理论基础,具有重要的理论价值和广阔的应用前景。
随着航天型号谱系的快速发展和发射密度的逐年提高,火工品强冲击环境导致的飞行事故频发,危及经济、国防和人民生命安全,因此航天设备对冲击环境的适应性问题正在受到越来越多的关注。目前由于缺乏对火工品强冲击环境下航天设备损伤机理认识,在研制过程中主要依靠大量“试错”式地面冲击试验进行飞行前考核,且试验结果有很大的不确定性,衍生出研制成本高、严重依赖进口元器件等诸多问题,航天设备的冲击环境适应性问题已成为制约航天器发展的瓶颈。针对以上问题,本项目开展了火工品强冲击环境中航天设备损伤及失效定量评估方法的研究:(1)通过广泛调研,掌握了火工品冲击环境动力学特性和典型航天电子设备的冲击失效模式;(2)通过理论分析、仿真计算和试验验证的方法,初步探明了火工品强冲击环境下典型航天电子元器件的动态损伤机理,针对3种失效模式给出了冲击损伤控制参数;(3)提出了基于伪速度谱的冲击损伤定量评估方法,构造了2种冲击环境损伤边界,并通过3种典型航天电子元器件的冲击失效边界试验和数值仿真验证了评估方法的正确性;(4)建立了航天设备典型元器件冲击环境失效准则,发展形成了工程可用的冲击环境试验设计方法,形成了设计标准,已成功指导某固体运载火箭的研制,目前正在航天器研制中推广应用。本项目的研究成果对更好的理解强冲击环境对结构的损伤效应具有重要的科学意义,为航天电子设备冲击环境适应性设计和评估提供了理论基础和关键技术,有效指导了航天设备冲击试验,为电子元器件的降额设计提供了依据,降低了航天器的研制成本、缩短了研制周期,同时确保了航天器的高可靠性。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
内点最大化与冗余点控制的小型无人机遥感图像配准
坚果破壳取仁与包装生产线控制系统设计
钢筋混凝土带翼缘剪力墙破坏机理研究
基于FTA-BN模型的页岩气井口装置失效概率分析
基于多孔材料的航天器火工冲击传递机理与隔冲方法研究
复材结构冲击损伤的非线性失效准则及动态分析方法
冲击暂态下智能电力设备动态失效机理及电磁干扰分层协同防护技术
强冲击环境下航天器典型结构中多模式组合波传播规律研究