凸域上的复合算子及其非交换拓展

基本信息
批准号:11771340
项目类别:面上项目
资助金额:48.00
负责人:王茂发
学科分类:
依托单位:武汉大学
批准年份:2017
结题年份:2021
起止时间:2018-01-01 - 2021-12-31
项目状态: 已结题
项目参与者:Koo Hyungwoon,侯友良,李小山,胡建,庞长保,郭鑫,王书明,苏桂聪,陈鹏
关键词:
Hardy空间复合算子Bergman空间再生核Hilbert空间代数Toeplitz
结项摘要

Composition operators have been widely studied due to many interesting problems from operator theory and function theory can be modelled into some corresponding problems in the theory of composition operators. This project aims to several key problems of composition operators on some typical convex domains by using the localization theory of function theory and some new methods and tools. That is, we will first describe the topological structure of composition operators on Bergman spaces over the unit disk. We then continue to study the compact difference of composition operators on Hardy spaces over the unit disk, which has been an open problem since it has been raised by Shapiro and Sundberg in 1990. Second, we study the boundedness of high dimensional composition operators over the unit ball, the polydisk and some model domains, which are basic open problems in the theory of composition operators. This will reflect the essential difference between high-dimensional composition operators and one-dimensional composition operators, and establish some relationship between the unit ball and polydisk, which are not holomorphic equivalence. Third, we will study composition operators on the spaces of Dirichlet series over some right-half planes, which will explore some connections between composition operators and Riemann conjecture. Last, we will study composition operators over noncommutative multivariable operator domains, which is one new development direction of operator theory. The research of this project will enrich the content of composition operators and perfect the theory of composition operators. In addition, the research will promote the feedback on function spaces from functional analysis.

复合算子由于可模型化算子理论和函数论中许多深层次的问题而受到广泛研究. 本项目拟结合函数论的局部化理论开采一些新方法, 研究几类典型凸域上复合算子的几个核心问题: 1.刻画单位圆盘上Bergman空间上复合算子的拓扑结构, 进而研究单位圆盘上Hardy空间上复合算子的紧差问题, 该问题自1990年提出之后一直是公开问题; 2.刻画单位球、多圆柱、模型域上高维复合算子的有界性问题, 这是复合算子理论界长期关注的焦点问题, 以此反映高维复合算子与一维复合算子的本质差异性, 建立单位球与多圆柱这两个不全纯等价域的内在联系; 3.深入研究半平面上Dirichlet级数上的复合算子, 探索复合算子与Riemann猜想的某种联系; 4.系统研究非交换域上的复合算子, 这是算子理论界新的发展方向. 本项目的研究必将丰富复合算子的研究内容,完善复合算子理论, 推动泛函分析基本理论对函数论的实质反馈.

项目摘要

复合算子由于可模型化算子理论和函数论中许多深层次的问题而受到广泛研究.本项目根据国内外复合算子及相关领域的最新研究现状与发展动态,以问题驱动为导向,结合函数论的局部化理论开采了一些新方法,研究了几类典型凸域上复合算子的几个核心问题:1.刻画了单位圆盘Bergman空间上复合算子的拓扑结构,完全解决了1990年Shapiro与Sundberg提出的一个公开问题;2.刻画了单位球与多圆柱上高维复合算子的有界性问题,这是复合算子理论界长期关注的焦点问题,反映了高维复合算子与一维复合算子的本质差异性;3.深入研究半平面上Dirichlet级数上的复合算子;4.系统研究非交换域上的复合算子,建立复合算子的非交换理论,开辟了复合算子理论新的发展方向.本项目的研究丰富了复合算子的研究内容,完善了复合算子理论,推动了泛函分析基本理论对函数论的实质反馈.

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

涡度相关技术及其在陆地生态系统通量研究中的应用

涡度相关技术及其在陆地生态系统通量研究中的应用

DOI:10.17521/cjpe.2019.0351
发表时间:2020
2

一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能

一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能

DOI:10.16085/j.issn.1000-6613.2022-0221
发表时间:2022
3

环境类邻避设施对北京市住宅价格影响研究--以大型垃圾处理设施为例

环境类邻避设施对北京市住宅价格影响研究--以大型垃圾处理设施为例

DOI:10.11821/dlyj020190689
发表时间:2020
4

内点最大化与冗余点控制的小型无人机遥感图像配准

内点最大化与冗余点控制的小型无人机遥感图像配准

DOI:10.11834/jrs.20209060
发表时间:2020
5

基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制

基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制

DOI:
发表时间:2018

王茂发的其他基金

批准号:41504037
批准年份:2015
资助金额:20.00
项目类别:青年科学基金项目
批准号:11271293
批准年份:2012
资助金额:60.00
项目类别:面上项目
批准号:10401027
批准年份:2004
资助金额:10.00
项目类别:青年科学基金项目

相似国自然基金

1

非交换Hardy空间上的算子代数研究

批准号:11771261
批准年份:2017
负责人:吉国兴
学科分类:A0207
资助金额:48.00
项目类别:面上项目
2

拟凸域上的几何分析

批准号:11071171
批准年份:2010
负责人:王安
学科分类:A0202
资助金额:28.00
项目类别:面上项目
3

Bergman 空间上非解析符号的复合算子

批准号:11601296
批准年份:2016
负责人:王子鹏
学科分类:A0207
资助金额:19.00
项目类别:青年科学基金项目
4

有限型凸域上的复分析

批准号:10071070
批准年份:2000
负责人:王伟
学科分类:A0202
资助金额:10.50
项目类别:面上项目