Wireless nanobiodevices (such as nanorobots) have great potential to revolutionize the diagnosis and therapeutic system for human health, but their use has been limited by difficulties in fabricating such nanobiodevices, and one of difficulties is to obtain an in-vivo energy source as their biopower component. To address this problem, this project aims to develop biocompatible 980-nm-laser-driven-nanogenerators (980LDNGs) as the in-vivo electrical source, and it consists of three steps. The first step is to design and prepare two kinds of flexible nanostructured electrodes with efficient up-converting luminescence. One kind is flexible flat nanostructured electrode, which will be prepared by depositing photoactive material/rare earth upconverting nanophosphor double-layers or mixed single-layer on flexible transparent conducting substrate. The other kind is flexible fiber-shaped nanostructured electrode, which will be obtained by fabricating rare earth upconverting nanofibers via the electrostatic spinning route and subsequently depositing transparent conducting layer and photoactive layer on the nanofibers. The second step is to use flexible nanostructured electrodes with up-converting luminescence to construct 980LDNGs, and then measure their photoelectric performances under the irradiation of 980 nm laser. The last step is to investigate the energy transfer and separation/transfer of photogenerated charge carriers in 980LDNGs, to optimize the photoelectric performance of 980LDNGs, and then to study the interaction between 980LDNGs and biological tissues for the application of 980LDNGs as novel biopowers in wireless nanobiodevices. This project will lay a foundation for the construction of new kind of in-vivo electrical source and the development of wireless nanobiodevices.
无线纳米生物器件将为生物医药领域带来革命性的变化,其发展前提是研发适用于生物体系的纳米电源。本项目旨在开发生物兼容的980nm激光驱动纳米发电机(980LDNG),主要研究内容包括:(1)设计和制备两类柔性上转换发光纳米复合电极;第一类是柔性平板状复合电极,即通过在柔性透明导电衬底上制备光电活性-稀土上转换发光材料的双层或者共混单层膜;第二类是柔性纤维状复合电极,先利用静电纺技术制备上转换发光稀土纳米纤维,再以纤维为衬底依次制备导电层和光电转换活性层。(2) 将两类柔性电极分别组装成980LDNG,并以980nm激光作为驱动力,测试980LDNG的光电性能。(3)探索980LDNG中能量转移以及光生载流子拆分和传输规律,优化和遴选高效的980LDNG,并研究其与生物体系的相互影响;最后探索其作为新型生物电源在纳米生物器件中的应用。本项目将为新型生物电源的研制和纳米生物器件的发展奠定基础。
近红外光具有良好的生物组织穿透性且对组织几乎无损伤等特点,在生物医学领域展现出了重要应用前景。进入生物体内的近红外光要发挥诊疗作用,其前提是需要可以吸收/转换近红外光的纳米器件或材料。本课题旨在开发近红外光驱动的纳米材料和纳米器件,主要成果有:(1)设计并构筑了具有上转换发光性质的纳米复合电极,例如NaYF4:Yb,Er-PET柔性复合膜电极、玻璃纤维-纳米ZnO电极、碳纤维-TiO2电极等;将它们组装成光伏电池,都具有光电响应;其中NaYF4:Yb,Er-PET柔性复合膜电池在980nm激光(强度: 720 mW cm-2, 面积: 0.25 cm2)照射下可发电94 μW; (2)设计和构筑了多种纳米半导体薄膜光电极,例如CuInSe2薄膜电极、P3HT-CdSe杂化薄膜电极、Cu2ZnSnS4纳米晶薄膜电极等,并组装成光伏电池,它们在可见光激发下都能有效发电;为将来构筑980-nm 激光驱动的纳米发电机奠定基础;(3) 开发了多种能吸收近红外激光的半导体纳米材料(例如W18O49纳米线、CuS纳米颗粒),它们能有效发热;将它们注入动物肿瘤内,在近红外激光照射下能消融癌细胞,为将来治疗人类癌症奠定基础;(4) 发展了其它类型光功能纳米材料,例如光催化材料和近红外光屏蔽材料,发现它们在能源和环境领域有较好的应用价值。申请人在Adv. Mater.、Adv. Funct. Mater.、J. Mater. Chem.B、CrystEngComm等重要期刊上共发表SCI论文27篇,申请中国发明专利有5项,授权专利有3项。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
生物炭用量对东北黑土理化性质和溶解有机质特性的影响
高性能摩擦纳米发电机的构筑及其在自驱动系统中的应用研究
生物分子驱动的DNA索烃纳米机器及其分析应用
3D打印摩擦纳米发电机的设计制造及其在自驱动有机污染物降解体系中的应用研究
磁致伸缩原理驱动的可植入式压电纳米发电机及其体内应用研究