Resistive memory based on resistive switching effect is an important directon of next-generation nonvolatile memory. However, the physical mechanism of the resistive switching effect is not well understood yet. This is the key problem to be solved to develop high performance resistive switching materials and memories. Our recent research indicated that spinel structure ferrite thin films had excellent resistive switching effect, and the resistive switching effect had something to do with migration and distribution of oxygen vacancies and magnetic properties of the thin films. Based on this research result, we put forward to further studying the physical meachanism of the resistive switching effect of the spinel ferrite thin films. By studying the compositions, microstructure, surface and interface structure of the spinel ferrite thin films, and taking into consideration of special structure of spinel ferrite materials, through effectively doping and modifying, defect formation and control, and optimized interfacial structure design, the correlation between magnetic property, transport property of carriers including migration and distribution of oxygen vacancies, and resistive switching performance of the thin films under temperature, electric field, and magnetic field will be studied, and the physical mechanisms of resistive switching effect will be well understood. This project will provide a useful reference for design and preparation of new resistive switching thin films and further nonvolatile memory applications.
基于电致阻变效应的电阻式存储器是下一代非挥发存储器发展的重要方向。然而,人们对电致阻变效应的物理机制还缺乏清楚的认识,而这是发展性能优异的电致阻变材料及其存储器件必须解决的关键基础问题。我们最近的研究显示,尖晶石结构铁氧体薄膜具有优异的电致阻变特性,并与氧空位的迁移和分布及材料的磁性存在一定的联系。以此为基础,我们提出进一步开展其电致阻变效应的物理机制研究。通过研究尖晶石结构铁氧体薄膜的组成和微结构、表面界面结构,并考虑到尖晶石铁氧体材料的结构特殊性,通过有效的掺杂改性、缺陷形成与控制和优化的界面结构设计,探讨温度、电场和磁场作用下材料的磁性、载流子的输运特性包括氧空位的迁移和分布等与电致阻变特性的关联,揭示其电致阻变特性的物理机制,为新型电致阻变薄膜的设计制备及进一步的存储器应用提供新的思路和实验借鉴。
本项目通过研究尖晶石结构铁氧体薄膜的组成和微结构、表面界面结构,并考虑到尖晶石铁氧体材料的结构特殊性,通过有效的掺杂改性、缺陷形成与控制和优化的界面结构设计,探讨了温度、电场和磁场作用下材料的磁性、载流子的输运特性包括氧空位的迁移和分布等与电致阻变特性的关联,对尖晶石结构铁氧体薄膜的电致阻变特性的物理机制有了更深刻的认识。本课题的研究为新型电致阻变薄膜的设计制备及进一步的存储器应用提供新的思路和实验借鉴。.研究结果已在APL, ACS Appl. Mater. & Interfaces, RSC Adv.等国际学术刊物上发表论文24篇,已发表论文被Adv. Func. Mater.、APL、IEEE Electron Dev. Lett.、ACS Appl. Mater. Interfaces等他引。在国际学术会议上作特邀报告4次。培养博士后1人,博士毕业或在读博士生6人,硕士毕业或在读硕士生2人。指导的部分博士生、硕士生已先后获得研究生国家奖学金、中山大学优秀研究生奖学金、第九届亚洲特电子陶瓷会议优秀学生奖、中国物理年会最佳张贴报告奖等奖励。.本项目的研究成果作为一部分内容获得广东省自然科学奖一等奖。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于被动变阻尼装置高层结构风振控制效果对比分析
猪链球菌生物被膜形成的耐药机制
基于改进LinkNet的寒旱区遥感图像河流识别方法
具有随机多跳时变时延的多航天器协同编队姿态一致性
组蛋白去乙酰化酶在变应性鼻炎鼻黏膜上皮中的表达研究
纳米复合尖晶石铁氧体薄膜的电致阻变及磁性调控机理研究
电场调控尖晶石型铁氧体薄膜阻变与磁性及其关联特性研究
柔性金属-有机框架薄膜电致阻变效应研究
界面微结构对非晶氧化铪薄膜电致阻变效应的调控研究