Morphine is one of the most effective drugs known for acute relief of severe pain. And the major problem in treating painful conditions with morphine is the tolerance, which limits the clinical utility. The ability of morphine to alleviate pain is mediated mainly through activating a G protein coupled receptor (GPCR), the μ opioid receptor (MOR). After binding with morphine, MOR will slowly recruit β-arrestin2. β-arrestin2 will release MOR from G proteins and prevent further coupling of G proteins, inducing MOR desensitization and internalization. Morphine telerance will then occur. Our preliminary data showed that the C terminal 47 amino acids of MOR could interact directly with β-arrestin2, depending on the phosphorylation status. β-arrestin2 knock-out mice showed remarkable potentiation of morphine analgesic effect and no tolerance. β-arrestin2 will be an effective target for alleviating morphine tolerance. This research plans to use the biochemistry technology, including Mammalian Two-Hybrid and TAT (transactivator of transcription) fusion peptide, to investigate the MOR and β-arrestin2 interaction involved amino acid sequences and their phosphorylation status. The interfering polypeptide will be designed basing on the interaction involved sequences of MOR and targeting β-arrestin2. The effect of the polypeptide on morphine analgesia and tolerance will be investigated at molecular, cellular and organismic levels. This research project will facilitate the development of novel adjuvant analgesic drugs of morphine.
吗啡是缓解剧烈疼痛的有效药物,严重的药物耐受反应限制其临床应用。吗啡通过特异性结合μ阿片受体(MOR)激活G蛋白偶联通路镇痛,随后诱发β-arrestin2到MOR缓慢聚集,阻断G蛋白偶联,导致MOR脱敏和细胞内吞,表现出药物耐受。本研究预实验结果证实MOR羧基末端47个氨基酸组成多肽能够和β-arrestin2直接相互作用,这种相互作用依赖于多肽的磷酸化。β-arrestin2敲除小鼠无吗啡耐受症状,证实为吗啡耐受研究的有效靶标。本研究计划采用哺乳动物细胞双杂交、融合穿膜肽TAT、体外交联等生物化学手段,确定MOR与β-arrestin2相互作用的氨基酸位点以及MOR磷酸化状态对二者结合的影响,并据此设计靶向β-arrestin2干扰二者相互作用的多肽,在分子、细胞和整体水平验证多肽对于吗啡耐受的影响。本项目的完成将为靶向β-arrestin2的新型吗啡辅助镇痛药物的设计和研发奠定基础。
吗啡是目前临床上最有效的快速缓解多种类型疼痛的药物之一,特别是对于剧烈疼痛和癌症痛有很好的疗效。然而,严重的药物耐受反应限制其临床应用。吗啡通过特异性结合μ阿片受体(MOR)激活G蛋白偶联通路镇痛,随后诱发β-arrestin2到MOR缓慢聚集,阻断G蛋白偶联,导致MOR脱敏和细胞内吞,表现出药物耐受。而β-arrestin2为吗啡耐受研究的有效靶标,其失活将明显抑制吗啡耐受的发生,靶向β-arrestin2抑制吗啡耐受具有重大应用潜力。本研究证实MOR能够和β-arrestin2直接相互作用,这种相互作用依赖于MOR的磷酸化。来源于MOR羧基末端的多肽能够明显抑制相互作用的发生,成为抑制吗啡耐受的潜在药物。我们通过大肠杆菌体外表达纯化的方式获得MOR羧基末端来源的多肽,并且于多肽的氨基端插入TAT穿膜肽序列,在其羧基端连接TEV酶切位点和GFP蛋白序列,通过亲和层析和分子筛层析等纯化步骤后,融合多肽纯度可达95%以上。细胞实验证实:该多肽能够高效穿过多种类型细胞的细胞膜。活体实验证实:该多肽能够进入小鼠脑部组织,为多肽的应用奠定基础。动物实验证实:该多肽能够显著抑制吗啡耐受的发生,不仅如此,该多肽对于吗啡引起的便秘等副作用也具有良好的治疗效果。融合多肽由于带有大量非必须氨基酸序列,我们使用TEV酶切后进一步进行了纯化,获得纯度大于98%的活性小肽,为后期的临床研究奠定了基础。本课题通过靶向β-arrestin2干扰MOR和β-arrestin2相互作用的方法抑制吗啡耐受,获得有活性的高纯度小肽,在分子、细胞和整体水平证实小肽对于吗啡耐受有显著的抑制作用。本项目的完成将为靶向β-arrestin2的新型吗啡辅助镇痛药物的设计和研发奠定基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation
Empagliflozin, a sodium glucose cotransporter-2 inhibitor, ameliorates peritoneal fibrosis via suppressing TGF-β/Smad signaling
An alternative conformation of human TrpRS suggests a role of zinc in activating non-enzymatic function
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
Baicalin provides neuroprotection in traumatic brain injury mice model through Akt/Nrf2 pathway
电针治疗骨癌痛吗啡耐受模型的阿片受体机制研究
μ/δ阿片受体异聚体活化小胶质细胞介导吗啡耐受的分子机制研究
抗阿片肽-99a拮抗吗啡镇痛和调节吗啡耐受作用机制的研
IRAS对μ阿片受体转运和吗啡功能的调节作用研究