Recently, electrode materials for electrochemical energy storage devices are a hot research topic nowadays, materials such as carbon materials (activated carbon, carbon nanotubes, graphene, etc.), metal oxide/sulfide nanomaterials have attracted great attention. Structural parameters such as morphology, size and pore-size distributions have a significant impact on the electrochemical properties of these materials. Thus it is a worthy and challenging task to optimize the electrochemical properties by tuning the structural parameters of these materials. Recently there emerges a novel method to prepare micro/nanomaterials with tunable structural properties via the formation of coordination compounds, resulting in micro/nanomaterials with outstanding electrochemical performances. The subtle coordination driving forces (coordination effect, hydrogen bond, accumulation effect, etc.) can result in the formation of complexes with tunable micro/nano structures. The coordination can then be turned to micro/nanomaterials via simple processes. This subject will focus on the application of this novel method of making micro/nanomaterials in the context of high-performance electrochemical energy storage. It will start with the driving.forces of coordination that result in coordinations, then a series of micro/nanomaterials (carbon materials, metal oxide/sulfide nanomaterials, etc.) derived from the coordinations will be syntheszed. The composition, morphology, size, porosity and other parameters of derived materials are tuned in order to optimize the electrochemical performances of these materials. Then high-performance electrochemical energy storage devices are assembled based on these electrode materials, often by the reasonable process optimization. Finally a theory basis and application prospects of these materials in the context of electrochemical energy storage are put forward.
近年来碳基材料、金属氧化物等纳米材料作为电化学储能材料,备受关注。这些材料的组成、形貌、尺寸、多孔性等因素严重影响其电化学性能,但是如何调节这些因素,进而优化其电化学储能特性,是急需解决的问题。近期由配合物衍生制备的微/纳米材料可以有效调节这些因素,使其具有良好的电化学储能特性,这表明由配合物衍生开发高性能电化学储能材料是很有研究意义。配合物形成的驱动力(配位作用、氢键、堆积效应等)影响其微纳结构形成,运用该原理可以合成配合物纳米材料。本课题将从配合物形成、晶体生长研究配合物纳米化问题;结合高性能电化学储能材料的要求,继而将配合物纳米材料衍生一系列材料(碳基材料、金属氧化物/硫化物纳米材料等);以优化衍生材料的组成、形貌、尺寸、多孔性等的方式提升电化学储能特性;然后通过合理工艺优化,组装成高性能电化学储能器件,最终为得到有应用前景的电化学储能材料提供可靠的理论依据。
近年来,由于化石能源的消耗,环境问题变得日益严重。电动出行设备的普及有望通过改变能源使用模式来解决出现的环境问题。近年来碳基材料、金属氧化物等纳米材料作为电化学储能材料,备受关注。近期由配合物衍生制备的微/纳米材料可以有效调节这些因素,使其具有良好的电化学储能特性,这表明由配合物衍生开发高性能电化学储能材料是很有研究意义。配合物形成的驱动力(配位作用、氢键、堆积效应等)影响其微纳结构形成,运用该原理可以合成配合物纳米材料。本项目自执行以来,已经将研究成果以学术论文的形式发表在多个国际\国内著名期刊中,并取得几项获批专利。其中组装的固态超级电容器有望应用于未来的可穿戴设备中。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
祁连山天涝池流域不同植被群落枯落物持水能力及时间动态变化
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
基于二维材料的自旋-轨道矩研究进展
低对称性配合物微纳晶态材料及其应用
多孔质碳化物衍生碳/石墨化骨架碳复合材料的结构调控与储能机制研究
MOF衍生金属氧化物/MXenes复合材料的合成与储能性能研究
微纳结构多孔C/NiO复合材料的结构设计与储能特性研究