In the chemical industry, many relevant products are prepared through thermodynamically favorable reactions and the produced energy is generally dissipated in the form of heat. If the same reactions are performed in a fuel cell configuration, this energy could be employed favorably to generate electricity together with the desired chemical products, thus significantly improving the sustainability and the economics of the electrochemical process. In this project, with or without Iron-containing N-doped mesopoures carbon materials will be investigated as electrocatalysts for the cogeneration of hydroxylamine (NH2OH) and electricity in a NO-H2 fuel cell. This electrochemical route for the production of NH2OH is a greener alternative to the present industrial synthesis, because it allows converting the released energy during the reaction into electricity. By using TEM, XPS, SAXS and other methods to characterize the structures of these catalysts, accompanying with the electrochemical study, to study of the influences of the related factors of electrocatalyst on the electric reduction process of NO, and the ultimately purpose is that elucidate the active sites of these types of electrocatalysts. On the basis of analyzing the atomic content and configuration of N, the 2D ordered or 3D foam-like mesoporous structure, and the pore size. The structures of the intermediates and products will be calculated by using DFT. To understand and describe the electron delocalization, covalent and noncovalent molecular interactions, both NBO and AIM analysis will be carried out on the optimized structures, respectively. Basing the experimental and theoretical results, the NO reducing path way will be derived. Finally, this project would theoretically support the promotion of chemical and energy cogeneration technology.
目前许多化学品是通过热力学自发反应的途径获得,反应中放出大量的热能而无法有效利用;理论上燃料电池可将化学能100%直接转换为电能,但是副产物几无利用价值。本项目的设想是化学物质和能源热电联产,将燃料电池与化学品进行串联,在生成有价值的化学品的同时产生电能。在前期研究基础上,本项目计划建立NO-H2燃料电池联产羟胺的反应系统。重点是制备N-掺杂介孔碳材料,以其做为电催化剂或制备含Fe催化剂用于化学电联产燃料电池的研究。利用TEM、XPS、SAXS等方法表征催化剂微观结构,研究相关因素对NO电还原过程的影响,阐明电催化活性点。在分析N原子含量及构型的基础上,拓展其2D有序和3D网状孔道结构,通过控制孔径大小等方法增加其有效性。使用DFT计算产物的结构,利用AIM、NBO等理论等对电荷转移等进行全面分析。结合实验结果推导出NO生成羟胺的反应历程。为化学物质和能源热电联产技术的推广应提供理论基础。
随着世界化石能源的日益匮乏和人类对能源需求的不断增加,人类不得不努力寻找可再生的绿色能源。同时环境的污染的治理也成为现阶段必须面对的课题。燃料电池作为一种新型绿色能源具有高效、易启动、污染小等优势,有希望大量提高电力产能的技术性飞跃。常规的燃料电池多为氢/氧或乙醇/氧反应,其最终产物为工业利用价值较小水和二氧化碳。本项目研究目的为化学物质和能源热电联产—将氧化还原反应生产出的工业化学品通过燃料电池装置完成,以达到在转化燃料为重要化学物质的同时产生能源发电的目的。同时扩展出不同大气中小分子气体在纳米材料表面的吸附模拟,因为催化剂表面吸附为所有催化反应的第一步,从而进一步研究可能的清洁催化反应。现今,在原材料和常规能源严重短缺的情况下,使用燃料电池的电化学合成方式生产有用的化学产物是一个前景广阔的研究课题。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
涡度相关技术及其在陆地生态系统通量研究中的应用
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
低轨卫星通信信道分配策略
中国参与全球价值链的环境效应分析
无铅反铁电储能电介质陶瓷的设计与制备、介电铁电响应行为及放电特性研究
铁电与高介电配合物
具有磁、介电响应的分子基铁电和介电材料
铁电介电基底上石墨烯的制备及其界面效应对电性能调控的研究