As Nevanlinna theory well applying in complex difference, many classical results in complex differential theory are extended in the field of difference, which provided powerful tools in the study of complex difference and difference equations. Complex difference has its own mathematical and physical background.The characteristic function is the most important character of meromorphic function. Based on the relationships between the characteristic functions of meromorphic function and its derivative, some scholars establish some classical results in Nevanlinna theory, such as a meromorphic function and its derivative have the same order and lower order, the estimations of the sum of Nevanlinna exceptional values of derivative of meromorphic function, etc. But it has few results on the relationships between characteristic functions of meromorphic function and its forward differences. So, the study of the characteristic functions of the forward differences has very important ignificance and application prospect. Further more, we study the Nevanlinna exceptional value of forward difference, which will make up and improve the value distribution of Nevanlinna theory. The topic on difference Painlevé equations is a hot one in the current. They have geometric and physical ackgrounds. In this project, we study value distribution of forward difference,contain the characteristic functions of forward differences and Nevanlinna exceptional value, and properties of meromorphic solutions of difference PainlevéIV equations, including Nevanlinna exceptional value of meromorphic solutions, value distribution of their difference and divided difference.
随着Nevanlinna理论很好地应用到复域差分,微分的很多经典理论被推广到差分领域,这为复域差分和差分方程的研究提供了强有力的工具。复域差分有自己的数学物理背景。特征函数是亚纯函数最重要的特征。基于亚纯函数与其导数的特征函数之间的关系,一些学者建立了Nevanlinna理论的一些经典结果,如亚纯函数与其导数有相同的级与下级,导数的亏量和的估计等等。而关于函数与高阶差分的特征函数之间的关系的结果却很少。因此高阶差分的特征函数的研究有着非常重要的意义和应用前景。然后我们研究高阶差分的Nevanlinna例外值,补充并完善值分布理论。差分Painlevé 方程是当前的热门研究课题,具有几何物理背景。本项目研究高阶差分的值分布,包括其特征函数和Nevanlinna 例外值,及差分 Painlevé IV 方程的亚纯解的性质,包括解的亏量,解的差分和均差分的值分布。
随着Nevanlinna理论很好地应用到复域差分,微分的很多经典理论被推广到差分领域,这为复域差分和差分方程的研究提供了强有力的工具。按照计划,我们主要研究高阶差分的值分布和差分方程的性质,完成的研究内容有以下五个方面:(1)给出了亚纯函数及其位移,高阶差分的不动点收敛指数之间的关系,一类线性差分方程亚纯解及其位移,高阶差分的不动点收敛指数之间的关系,解的位移和高阶差分的亏值;(2)微分差分方程的亚纯解;(3)一类函数方程的性质,将q差分方程的性质推广到函数方程中;(4)亚纯函数差分的唯一性与差分方程的唯一性,研究了亚纯函数、差分与二阶差分CM分担值时的唯一性问题;研究了与Schwarzian微分方程相关的差分方程的亚纯解与任一亚纯函数CM分担值时的唯一性问题;(5) 一类亚纯函数的Fekete-SzegÖ不等式。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
基于分形L系统的水稻根系建模方法研究
资本品减税对僵尸企业出清的影响——基于东北地区增值税转型的自然实验
氯盐环境下钢筋混凝土梁的黏结试验研究
钢筋混凝土带翼缘剪力墙破坏机理研究
复微分差分方程问题及Fermat型方程亚纯解的值分布
亚纯函数差分算子值分布及复微分差分方程的研究
亚纯函数的值分布与复微分、差分方程
复域差分方程、微分差分方程亚纯解的性质及应用研究