非Grad截断条件下Boltzmann方程解的正则性研究

基本信息
批准号:11226167
项目类别:数学天元基金项目
资助金额:3.00
负责人:林诗游
学科分类:
依托单位:海南师范大学
批准年份:2012
结题年份:2013
起止时间:2013-01-01 - 2013-12-31
项目状态: 已结题
项目参与者:徐景实,李亚玲,董宝华
关键词:
Sobolev正则性质DebyeYukawa位势Gevrey正则性质非Maxwellian类型逆幂律位势
结项摘要

Without the Grad’s cutoff assumption, the Boltzmann operator behaves like a fractional Laplace operator. This means that the solutions of the Boltzmann equation may have smooth properties. Inspired by this conclusion, this project mainly studies the regularities of the solution of the corresponding Cauchy problem of the Boltzmann equation without angular cutoff in suitable hypotheses of the initial value. Those include the Sobolev regularity and the Gevrey regularity. Firstly, based on the work of R.Alexandre and others, we plan to further study the Sobolev regularity of the solution of the Boltzmann equation with Debye-Yukawa potential in the usual non-Maxwellian case. Secondly, we will consider the Gevrey regularity of the solution of the corresponding linearized and nonlinearized Cauchy problem with the inverse power law potential in the modified non-Maxwellian case. The solution of these problems will promote the development of the theory of the Boltzmann equation. The new ideas and methods will help the study of the regularity of the solutions for the related equations (e.g., Landau equation, Kac equation).

在无Grad截断假设情况中,Boltzmann算子类似于一个分数形式的Laplace算子,这蕴含了Boltzmann方程的解可能存在着某些光滑性质。受此启发,本项目主要研究一定初值条件下,无截断情形Boltzmann方程对应Cauchy问题解的正则性质,包括Sobolev正则性和Gevrey正则性。首先探讨通常的无修正非Maxwellian情形,基于R. Alexandre等人的工作,我们进一步研究带有Debye-Yukawa位势的Boltzmann方程解的Sobolev正则性。然后考虑修正后的非Maxwellian情形,带有逆幂律位势的对应线性化及非线性化Cauchy问题解的Gevrey正则性。这些问题的解决将促进Boltzmann方程理论的发展,从中开辟的新思路、新方法则有助于研究与Boltamann方程有紧密联系的诸如Landau方程、Kac方程等方程解的正则性。

项目摘要

在本项目中我们主要完成的工作是研究了与齐次Boltzmann方程相关的线性化问题解的Gevrey类光滑性质。在赋予初值满足一般性质量守恒、能量守恒以及熵守恒的情况下,我们对一般性质的碰撞算子进行适当的修正,并在此基础上推出齐次Boltzmann方程相关的线性化问题解是具有一定的Gevrey类光滑性质的。在其他相关研究领域,例如抽象空间的性质、各类不等式性质的推广及应用、分数阶微分方程解的定性理论等方面也取得了一系列成果,得到了新型的变指数Herz型Banach空间、Bochner-Lebesgue空间以及T-L空间的一系列性质。推广了Gronwall不等式,并将之应用在研究不同形式分数阶微分方程解的定性理论课题中。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

低轨卫星通信信道分配策略

低轨卫星通信信道分配策略

DOI:10.12068/j.issn.1005-3026.2019.06.009
发表时间:2019
2

Himawari-8/AHI红外光谱资料降水信号识别与反演初步应用研究

Himawari-8/AHI红外光谱资料降水信号识别与反演初步应用研究

DOI:
发表时间:2020
3

生物炭用量对东北黑土理化性质和溶解有机质特性的影响

生物炭用量对东北黑土理化性质和溶解有机质特性的影响

DOI:10.19336/j.cnki.trtb.2020112601
发表时间:2021
4

Wnt 信号通路在非小细胞肺癌中的研究进展

Wnt 信号通路在非小细胞肺癌中的研究进展

DOI:
发表时间:2016
5

基于LBS的移动定向优惠券策略

基于LBS的移动定向优惠券策略

DOI:10.3969/j.issn.1005-2542.2020.02.009
发表时间:2020

林诗游的其他基金

批准号:11761027
批准年份:2017
资助金额:36.00
项目类别:地区科学基金项目

相似国自然基金

1

无截断非齐次Boltzmann方程Gevrey正则性理论研究

批准号:11761027
批准年份:2017
负责人:林诗游
学科分类:A0306
资助金额:36.00
项目类别:地区科学基金项目
2

Boltzmann方程及相关方程解的正则性和渐近性态

批准号:11101188
批准年份:2011
负责人:刘双乾
学科分类:A0306
资助金额:22.00
项目类别:青年科学基金项目
3

Boltzmann方程解的性态研究

批准号:10871151
批准年份:2008
负责人:赵会江
学科分类:A0306
资助金额:26.00
项目类别:面上项目
4

无穷Laplace方程解的边界正则性

批准号:11301411
批准年份:2013
负责人:洪广浩
学科分类:A0304
资助金额:22.00
项目类别:青年科学基金项目