Nanocarbon materials possess unprecedented characteristic features that cannot be observed or achieved by other materials, and therefore hold promising potential in implantable medical applications. Coupled with recent progress in materials science, electrochemistry, analytical chemistry and biomedicine, we propose the development of a new type of lightweight and flexible implantable versatile electrode, and carry out the fundamental research in this respect: In this project, we design the systematic research framework of “material selection-technology development- function orientation-structure tuning-performance optimization-device assembly”. Based on it, three-dimensional (3D) nanocarbon-based macroassembly will firstly be fabricated using zero-dimensional (0D) hollow carbon nanoshpere (HCNS), one-dimensional (1D) carbon nanotube (CNT) and two-dimensional (2D) graphene nanosheet (GN) as the building-blocks. The scalable integration of 0D HCNS, 1D CNT and 2D GH leads to the formation of lightweight and flexible nanocarbon-based thin film with bionic “muscle-skeleton-skin” nanostructure. The resultant 3D nanocarbon-based macroassembly will further be functionalized by loading hierarchical nanomaterials with different morphologies and components on it. Taking advantages of the synergetic contribution from the multi-dimensional, multi-component and multi-layered coupling, the overall performances of 3D nanocarbon-based composite materials will be improved to a great extent, which enable them be used as high-performance implantable versatile electrodes in implantable energy-related device and implantable sensing devices. It can envision that this proposal will provide new insights on the fabrication of lightweight and flexible carbon-based electrodes for a diverse range of applications, and will contribute to the development of a new generation of implantable devices.
碳纳米材料以其无可比拟的特性在植入式医学领域极具应用潜力。本项目结合材料学、电化学、分析化学和生物医学等多学科前沿进展,构筑基于三维纳米碳基复合组装体的轻质柔性可植入多功能电极,并开展相关基础研究:设计“材料甑选—工艺开发—功能导向—结构调控—性能优化—器件组装”研究体系,以零维空心碳纳米球、一维碳纳米管和二维石墨烯纳米片为构筑单元,开发规模化合成工艺,制备微观上呈现仿生学上类似“肌肉-骨骼-皮肤”纳米结构、宏观上呈现轻质柔性薄膜结构的碳基组装体;建立纳米尺度下碳基材料功能化新方法,以纳米碳基组装体为载体负载多种不同形貌和组成的功能纳米材料,构建具有分级结构的纳米碳基复合组装体;通过多维度、多组分、多层次耦合全面提升纳米碳基复合材料的综合性能,构筑可用于植入式储能和传感装置的高性能可植入多功能电极,为构建具有普适意义的轻质柔性碳基电极提供全新的思路,为研发新一代植入式器件奠定坚实的基础。
本项目结合材料学、电化学、分析化学和生物医学等多学科前沿进展,构筑基于三维纳米碳基复合组装体的轻质柔性可植入多功能电极,并开展相关基础研究:设计“材料甑选—工艺开发—功能导向—结构调控—性能优化—器件组装”研究体系,以空心碳纳米球、碳纳米管和石墨烯纳米片为构筑单元,开发规模化合成工艺,制备微观上多种不同维度的纳米碳基组装体,如一维碳基纤维、二维纸状薄膜和三维多孔泡沫材料等;建立纳米尺度下碳基材料功能化新方法,以纳米碳基组装体为载体负载多种不同形貌和组成的功能纳米材料,构建具有分级结构的纳米碳基复合组装体;通过多维度、多组分、多层次耦合全面提升纳米碳基复合材料的综合性能,构筑具有优异储能和传感装置的轻质柔性高性能多功能电极,如一维碳基纳米复合纤维微电极、二维柔性碳基纳米复合纸电极和三维轻质多孔自支撑电极等,并且开发了其在电化学超灵敏检测癌细胞和肿瘤组织中的肿瘤标志物的实际应用。本项目的研究工作为构建具有普适意义的轻质柔性碳基电极提供全新的思路,为研发新一代植入式器件奠定坚实的基础,在纳米技术和临床医学等领域具有广泛的应用前景。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
连续型三维碳纳米复合材料基酶修饰电极及柔性化的研究
膨化大米碳植入纳米金属复合电极的构建及其钠电容行为机制研究
新型轻质柔性石墨烯片-碳纳米管基复合膜电极材料的设计、可控制备及其超电容特性研究
中空碳纳米纤维基三维柔性超级电容器电极材料的制备及电化学性能