Laser interaction with micro-nano structures in metal or dielectric is one of the core scientific problems in the field of optoelectronics. Metal-filled photonic crystal fiber (MPCF) has the property of flexible structure design and the surface plasmon resonance effect. MPCF provides a new carrier and breakthrough for this problem. In this project, the silica MPCF has been simulated and designed based on the theory of optical waveguide and the surface plasma. Because of high temperature heating, the problem of silica crystallization will appear in the MPCF fabrication process, and this problem will be solved. The relationship between the structure parameters of MPCF and the key fabrication parameters such as temperature, pressure and time will be revealed. Silica MPCF containing metal wire or metal film can be prepared by reasonable filling or coating method. The characteristics of MPCF, such as loss, polarization, nonlinear, coupling and filtering, will be tested in this project. The mechanism and characteristics of surface plasmon resonance in the MPCF will be revealed by the combination of theory and experiment results. Developing of MPCF can greatly promote the quality of the photonic crystal fiber and extend its application scope. The polarization filter and sensor based on MPCF are expected to become the next research hotspot in the field of special optical fiber. Because there are metal wires with size of micron or nanometer along the MPCF's axial, optical carrier signal can be directly transmitted to metal by MPCF. Due to the special structure, MPCF could be used to solve the problem of photoelectron interconnection in the scale of subwavelength.
激光与金属或电介质微纳结构相互作用研究是光电子学领域的核心科学问题之一,金属填充光子晶体光纤(MPCF)集表面等离子体效应和光子晶体光纤灵活的结构设计于一体,为该问题的研究提供了新的载体和突破点。本项目基于光波导和表面等离子体理论,模拟并设计具有优异性能的石英基MPCF;解决MPCF制备过程中高温加热导致石英结晶的问题,揭示制备过程中温度、气压和时间等关键参数与光纤结构参数之间的关系,实验制备石英基MPCF;测试MPCF的损耗、偏振、非线性、模式耦合和滤波特性,理论与实验相结合揭示MPCF中表面等离子体共振的产生机理及其对光纤特性的影响。MPCF的研制可以极大地提升光子晶体光纤的品质并扩展其应用范围,基于MPCF的偏振滤波器和传感器有望成为特种光纤领域的下一个研究热点。由于MPCF可将光载信号直接传递给沿光纤轴向分布的具有良好导电性的金属,利用它有望解决亚波长量级的光电子互联问题。
光在金属与介质的交界面传播时会产生表面等离子体共振效应,金属填充光子晶体光纤集表面等离子体效应和光子晶体光纤灵活的结构设计于一体,为激光与微纳结构相互作用的研究提供了新的载体和突破点。本项目基于光波导和表面等离子体理论,模拟并设计了多种类型的性能优异的石英基金属填充或镀膜光子晶体光纤,这些光纤可作为偏振滤波器、偏振分束器和传感器。本项目提出的填充金线的D型光子晶体光纤可以在光通信的1.31μm 和1.55 μm两个低损耗通信波段实现偏振滤波,其窜扰优于30dB的带宽分别达到88 nm和150 nm。设计了一种石英基碲酸盐玻璃填充双芯光子晶体光纤宽带偏振分束器,对于1.55μm波长处,当传输距离为540μm时,x偏振光功率完全在芯A中,y偏振光功率完全在芯B中,该偏振分束器在波长1461nm到1745 nm的范围内的消光比大于20dB。设计了一种镀金膜温敏液体填充六芯光子晶体光纤温度传感器,在满足相位匹配条件时芯模和表面等离子体模之间会产生强烈的耦合,该传感器的线性度可达0.99991,平均灵敏度可达到-2.15 nm/°C。在光子晶体光纤的制备过程中,我们解决了高温加热导致石英结晶的问题,进一步研发了气体保压装置,找到了光子晶体光纤制备过程中温度、气压和拉制速度等外部参数与光纤结构参数之间的关系,制备了多种类型的单芯、双芯、多芯、带隙型、金属填充或镀膜型光子晶体光纤。利用实验制备的光子晶体光纤进行了温度、折射率、磁场等的传感检测,理论与实验相结合揭示了金属填充光子晶体光纤中表面等离子体共振的产生机理及其对光纤特性的影响。金属填充或镀膜极大地提升了光子晶体光纤的品质并扩展了它的应用范围,本项目的研究为基于金属填充光子晶体光纤的偏振滤波器、偏振分束器和传感器的研制奠定了坚实的理论和技术基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
粗颗粒土的静止土压力系数非线性分析与计算方法
家畜圈舍粪尿表层酸化对氨气排放的影响
古戏台传音的秘密
铁酸锌的制备及光催化作用研究现状
基于D型光子晶体光纤表面等离子体共振传感技术研究
红外硫系玻璃基质光子晶体光纤设计、制备及性能研究
基于选择性填充的光子晶体光纤光开关研究
高功率激光器用掺镱光子晶体光纤设计、制备及性能研究