With the deepening of global energy and environmental crises, solar photovoltaic power generation has developed rapidly as an important clean energy source. In the information age, antennas have been widely used as an essential part of wireless interconnection. Both the solar cells and the antennas need a certain aperture area to collect sunlight and provide effective aperture gain, respectively. This project proposes the idea of designing Silicon-based solar cells and antennas with shared aperture, and points out that the antenna efficiency and power generation efficiency reduce caused by shared aperture design. To solve the above problems, first, transparent dielectric resonant antennas, transparent conductive film antennas, metal wire grid antennas, etc. are used to reduce the structure damage and shielding of the solar cells; Second, according to the different of operating frequencies of the antennas, coplanar waveguide feed, coupled feed, etc. are used to improve feed efficiency; Third, artificial magnetic conductor (AMC), electromagnetic band gap structure (EBG), etc. as reflective floors are used to guide the antenna forward radiation; Finally, according to the structural features of Silicon-based solar cells and the electromagnetic properties of their metal wire grid electrodes, antennas and solar cells performance are promoted through making reasonable layout and overall optimization. Through the research of this project, the concept of shared aperture design for solar cells and antennas will be verified, and the low-efficiency problem of shared aperture design for Silicon-based solar cells and antennas will be broken, this will lay the technical foundation for their engineering applications.
随着全球能源与环境危机加深,太阳能光伏发电作为一种重要的清洁能源得到迅速发展。信息时代,天线作为无线互联必不可少的组成部分,得到广泛应用。太阳电池和天线均需要一定的孔径面积分别用以收集太阳光和提供有效孔径增益。本项目提出将硅基太阳电池和天线共孔径设计构想,并指出共孔径设计带来的天线效率和发电效率降低问题。针对上述问题,一,采用透明介质谐振天线、透明导电薄膜天线、金属线栅天线等降低天线对太阳电池结构的破坏及遮挡;二,根据天线工作频率的不同,采用共面波导馈电、耦合馈电等提高馈电效率;三,采用人工磁导体(AMC)、电磁带隙结构(EBG)等作为反射地板引导天线正向辐射;四,结合硅基太阳电池构造特点及其金属线栅电极的电磁特性,进行合理布局,整体优化天线及太阳电池性能。通过本项目研究,验证太阳电池天线共孔径设计构想,突破硅基太阳电池天线共孔径设计的低效率瓶颈,为工程应用打下技术基础。
随着全球能源与环境危机加深,太阳能光伏发电作为一种重要的清洁能源得到迅速发展。信息时代,天线作为无线互联必不可少的组成部分,得到广泛应用。太阳电池和天线均需要一定的口径面积分别用以收集太阳光和提供有效孔径增益。本项目提出并验证了太阳电池和天线共口径设计构想,并着力解决共口径设计带来的天线效率和发电效率降低问题。针对上述问题,重点开展了如下研究内容:一,太阳电池天线共孔径设计天线高效率技术研究;二,太阳电池天线共孔径设计太阳电池高效率技术研究;三,太阳电池和天馈线联合设计技术研究。本项目分析了太阳电池结构特点及其电磁特性,分析了太阳电池与天线相互作用机理,通过设计小型化镂空金属线栅型天线来降低天线对太阳电池发电能力的影响。项目设计了一系列太阳电池天线,其中,一款代表性的太阳电池相控阵天线工作带宽为2.5-5 GHz,具备二维±45°相控扫描能力。该相控阵天线口径效率为68.9%–84.1%,同时,对比纯太阳电池片,该太阳电池天线相对最大输出功率比为87.1%。该相控阵天线具备很好的可扩展性,可用于5G通信sub-6 GHz系统,可用于设计研制自供能5G通信系统。. 本项目取得的研究成果如下:发表期刊论文及会议论文共计8篇,包含天线领域顶级期刊IEEE Transactions on Antennas and Propagation。申请发明专利5项,已授权4项。培养研究生5名,其中2名硕士研究生已毕业。本项目突破了太阳电池天线共口径一体化关键技术,较好的解决了太阳电池降低天线辐射效率、天线结构影响太阳电池发电能力的核心问题。结合工程应用需求,设计研制了多款太阳电池相控阵天线,验证了太阳电池天线的性能。本项目技术成果有望用于航天、无线通信、物联网等领域。
{{i.achievement_title}}
数据更新时间:2023-05-31
高压工况对天然气滤芯性能影响的实验研究
混采地震数据高效高精度分离处理方法研究进展
上转换纳米材料在光动力疗法中的研究进展
夏季极端日温作用下无砟轨道板端上拱变形演化
一种可穿戴指间角度测量系统设计
硅基等离子天线建模与高效率关键技术研究
低电阻率硅基片上天线的高效率关键技术研究
稀布共形阵列天线设计及其数字波束形成技术研究
多晶硅太阳电池高效率化研究