Because the implantable biomedical equipment is used to operate in the human body, it needs to take care of the compatibility and safety non-invasive with human tissues. As a part of its design, the RF chip has been proposed the stringent requirement on the realization of miniaturization. Therefore, the inductorless RF integrated circuit design has become a research trend. Currently, the current transmission active devices are the basic building blocks, such as current conveyor (CCII), current differential transconductance amplifier (CDTA), and so on. The current transmission active devices have the following significant advantages: without requiring an inductor passive component and thus they have a smaller chip area, and their circuit parameters can be flexibly adjusted by an external biasing current. At present, the current transmission active devices are only widely used in the low operating frequency of analog integrated circuit. In view of these reasons, this project intends to research the inductorless RF integrated circuit design based on the current transmission active devices. By exploring the novel current transmission active devices and their derivative structures, this project will be to solve the problem of low operating frequency due to the large number of MOS transistors and the non-ideal characteristics in the conventional current transmission active devices. Then, this project will expand the application domains of current transmission active devices from the frequency of kHz (or MHz) analog integrated circuit into the frequency of GHz RF integrated circuit. On the basic of the above, this project will research the wideband RF chips which have been operating in the frequency of GHz, such as low noise amplifier (LNA), mixer and voltage controlled oscillator. Therefore, this project can provide the principle and guiding theory for the miniaturized RF chip design based on the current transmission active devices. Finally, the research results of this project will provide a new idea and a new method for the design of miniaturized RF integrated circuit in the implantable biomedical equipment.
考虑到与人体组织的相容性和无创性,植入式生物医疗设备对射频芯片的微型化提出了严苛要求,无电感射频集成电路设计成为研究趋势。当前电流传输有源器件(如CCII、CDTA等)作为基本积木块,它无需电感无源元件,芯片面积小,电路性能参数可通过外部偏置电流灵活调节,目前它仅在低工作频率的模拟集成电路中广泛应用。鉴于此,本项目采用电流传输有源器件进行无电感射频集成电路研究,通过探索新型电流传输有源器件及其衍生结构,解决传统电流传输有源器件中因MOS管数量多及非理想特性导致的工作频率低等问题,把电流传输有源器件的应用由kHz(或MHz)频段的模拟集成电路领域拓展到射频集成电路领域,设计出工作在GHz频段的LNA、混频器、压控振荡器等宽带射频芯片,为基于电流传输有源器件的微型化射频芯片设计提供原理性和指导性的理论依据。本项目的研究成果,将为植入式生物医疗设备中微型化射频集成电路设计提供一种新思路与新方法。
为了减少电感无源元件的使用以满足微型化射频芯片设计要求,本项目对基于电流传输有源器件的微型化射频芯片设计理论与方法进行研究,即基于新型电流传输有源器件,来设计工作在GHz频段的射频单元电路,使其满足植入式生物医疗设备中微型化射频集成电路的设计要求。本项目形成了一种基于电流传输有源器件的微型化射频芯片设计理论,提出了几种适用于GHz频段的新型电流传输有源器件及其衍生结构,使该类器件适合微型化射频电路的设计应用要求。完成了射频收发机前端各单元电路(包括射频宽带混频器、射频宽带低噪声放大器、射频压控振荡器与射频宽带功分器等)的设计,且大部分电路设计基于电流传输有源器件和有源电感的设计方法,所设计出的射频收发机各单元电路在有各自高性能的同时,均具有微型化的特点。电流传输有源器件作为无电感、微型化的有源积木块,它为性能较高的射频集成电路设计提供了新思路。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
基于二维材料的自旋-轨道矩研究进展
F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度
基于射频指纹分析的芯片退化监测方法与模型研究
基于石墨烯的电磁波传输特性及射频无源器件的基础研究
射频能量捕获网络信息与能量集成传输理论与方法
多功能有源无源光电子器件的集成芯片技术研究