Occupational workers from the firefighting, naval, petrochemical, energy sectors and food industry often encounter pressurized hot steam hazards. Protective clothing and equipment is required to protect them from scald burn injuries. Till now, there is a lack of establishment of relevant testing standards to assess the performance of protective clothing against hot steam. Thus, a thorough investigation on the performance evaluation of protective clothing against hot steam and its protection mechanism is highly needed. ..In this proposal, a novel parameter adjustable test apparatus will be designed and a performance evaluation system will be established to provide a unique steam protective performance test. The effects of fabric thermo-physical properties, fabric combinations, waterproof finishing methods, the intensity of hot steam hazards, the impingement angle of steam, the air gap size and distribution, the moisture content and location, and the fabric shape on the protective performance will be explored. The empirical models will also be proposed to predict the protective performance of fabric systems. Furthermore, a numerical heat and mass transfer model will be developed to figure out the distribution of temperature and moisture in the steam hazard-protective fabric-skin system, and thus the mechanism associated with heat and moisture transfer will be clarified. Finally, the protection mechanism of the protective fabric system will be elucidated by experimental performance evaluation and modeling proposed in this study...The research findings will not only provide technical bases for the development of high performance materials and personal protective clothing, but also give suggestions on the development of test methods and standards regarding protective clothing against hot steam. The project will also help to reduce the number of scald burn injuries for occupational workers wearing protective clothing against hot steam.
消防、海军、石油化工、能源工业、食品加工等行业工作人员经常遭受高压蒸汽灾害,需要穿着特定的防护服装以免人体被蒸汽烫伤。目前国内外还没有建立完善的蒸汽防护服性能评价体系,蒸汽防护机理仍不明确。基于国家安全发展的需要,本项目拟研制新型的参数可调的高压蒸汽防护性能测试设备,构建蒸汽防护性能综合评价体系。其次,设置不同的测试条件,探索影响织物系统蒸汽防护性能的关键因素,建立织物蒸汽防护性能经验预测模型。再次,建立蒸汽防护服装面料的传热传质模型,求解系统内的温度场和湿度场分布,揭示蒸汽环境下织物-皮肤之间的热湿传递规律。最终,通过实验测评和模型研究阐明织物系统的蒸汽防护机理。项目的成功实施不仅可以指导新型防护材料和个体防护装备的研发,还可以为制定和完善相关测试标准和评价方法提供参考,在振兴我国纺织产业战略转型、有效遏制人体遭受高压蒸汽伤害等方面具有非常重要的现实意义和应用价值。
目前国内外还没有建立完善的蒸汽防护性能评价体系,防护机理仍不明确。首先,联合开发了一种新型的参数可调的高压蒸汽测试设备,建立了热防护性能和热灾害性能两个评价指标,主要包括二级烧伤时间t2nd、三级烧伤时间t3rd、暴露阶段吸收能量EAE、储存热释放能量CAE、吸收总能量TAE等参数,构建了新型的评价体系。其次,从面料基本性能、含湿量及位置、空气层尺寸及位置、穿着磨损等角度探索了影响蒸汽防护性能的关键因素并建立了一维或二维的经验预测模型,获得的结论如下:(1)面料层数、厚度和透气层影响防护性能,防水透气膜及其位置也影响防护性能。(2)外层和内层吸湿后因储存热增加会降低蒸汽传递至皮肤的热流量,即热防护性能随含湿量的增加而增加,但外层吸湿的影响更大。外层吸湿量对热灾害性能没有显著影响,然而内层吸湿量会增加热释放量。内外层均含湿对热防护性和热灾害性的作用一般比单一含湿时的作用更大。进一步建立了内外层含湿量及位置与热防护性能和热灾害性性能的二维模型。(3)当内层空气层尺寸逐渐增加时,织物系统的二级和三级烧伤时间均显著增加。在较大的空气层下,内层空气层增加系统的防护性能EAE优于中间空气层,中间空气层对CAE的作用明显强于内层空气层,内层空气层对TAE的影响强于中间空气层。成功建立了空气层尺寸及位置与热防护性能与热灾害性能之间的二维数学关系。(4)辐射的总时间、暴露频率和单次暴露时间均会影响蒸汽防护服装材料的力学性能;洗涤和磨损交互作用时,综合作用的影响大于单独作用的影响,磨损对织物防护性能造成的影响比洗涤更显著,两个因素的但交互作用的方式并无明显差异。最后,基于建立的预测模型和热流量曲线,揭示蒸汽环境下织物-皮肤之间的热湿传递规律,阐明织物系统的蒸汽防护机理。研究结果为功能防护材料的开发提供了新的视角,在振兴我国纺织产业战略转型、有效遏制人体遭受高压蒸汽伤害等方面具有非常重要的现实意义和应用价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
硬件木马:关键问题研究进展及新动向
基于公众情感倾向的主题公园评价研究——以哈尔滨市伏尔加庄园为例
镁合金智能自修复防护体系的构建及自修复防护机理研究
内源型金属自修复防护体系的构建及其持久自修复防护机制研究
医用防护服装面料结构与阻隔、透湿性能关系的研究
气凝胶热防护服微宏观设计及其防护性能与机理研究