Due to its excellent controllable optical and electrical properties, halide perovskite quantum dot shows great application values in solar cells, LED and other optoelectronic devices. However, there are still some problems in perovskite quantum dots, such as poor stability, low blue light fluorescence efficiency and limited wavelength of light emission. The doping of rare earth ions can effectively modulate the optical properties of perovskite quantum dots. Quantum cutting emission with a quantum efficiency up to 146% was observed in ytterbium-doped all-inorganic perovskite quantum dots, which enhanced the photoelectric conversion efficiency of single crystal silicon solar cells by 18.8%. Based on this, this project aims to further improve the quantum efficiency of quantum cutting emission through cationic substitution, halogen component optimization, local field regulation and so on. We plan to study the sensitization of rare earth ions such as Nd3+,Dy3+,Tb3+,Pr3+ and Ce3+ to quantum cutting emission. The effects of defects on quantum cutting emission will be studied deeply, and the physical mechanism of quantum cutting will comprehensively analyzed.On this basis, ytterbium-doped perovskite quantum dots will be applied to enhance the photoelectric conversion efficiency of commercial single crystal silicon solar cell and copper indium gallium selenium (CIGS) solar cell. To get the effective and long-term stable solar cells, we plan to explore the packaging technology of solar cells and put into practice in our daily life.
卤化物钙钛矿量子点由于其具有优异可控的光学、电学性质,在太阳能电池和LED等光电器件中具有巨大的应用价值。然而,钙钛矿量子点仍然存在稳定性差、蓝光荧光效率低以及发光主要局限于可见光等方面的问题。稀土离子的掺杂可以有效调控钙钛矿量子点的光学性质,其中,镱掺杂的全无机钙钛矿量子点实现了量子效率高达146%的近红外量子剪裁发光,并应用于单晶硅太阳能电池,使光电转换效率相对提高18.8%。基于此,本项目通过阳离子替换、卤素组分优化以及局域场调控等方法,进一步提高量子剪裁荧光量子效率;研究Nd3+,Dy3+,Tb3+,Pr3+,Ce3+等稀土离子的共掺杂对量子剪裁发光的敏化作用;深入研究量子点内缺陷对量子剪裁发光的影响,全面分析量子剪裁的物理机制;将镱掺杂的钙钛矿量子点作为光转换层应用于商用单晶硅和铜铟镓硒等多种太阳能电池,探索太阳能电池的封装工艺,得到高效稳定、面向实际应用的太阳能电池。
镱掺杂钙钛矿量子点由于其具有量子剪裁发光的特性,首次报道内量子效率就达到了146%,广受国内外关注。为了进一步提升优化材料性能,使其能够更好的在光伏器件上应用,本项目采用多种优化策略,并获得了如下进展:(1)采用基质组份和多离子掺杂的调控方法,使量子剪裁发光内量子效率最高达到173%;(2)通过第一性原理计算,在理论上证明稀土掺杂钙钛矿量子点的可行性;(3)将采用量子剪裁发光材料制备的转光薄膜应用于硅和铜铟镓硒光伏器件,使光电转换效率相对提升超过20%,具有极大的应用前景;(4)进一步拓展了稀土掺杂钙钛矿量子点在光电探测器、发光二极管和钙钛矿太阳能电池等领域的应用。受本项目资助,共发表SCI论文20篇,其中在影响因子10以上的国际顶尖和著名期刊上发表论文12篇,包括:Nano Lett., Light Sci. Appl., Adv. Energy Mater., Adv. Funct. Mater.,ACS Energy Lett.,Nano Energy,Chem. Eng. J;申请国家发明专利7项。研究成果被“New Scientist”、“Interesting Engineering”等国际网站宣传报道。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
内点最大化与冗余点控制的小型无人机遥感图像配准
氯盐环境下钢筋混凝土梁的黏结试验研究
基于二维材料的自旋-轨道矩研究进展
锰掺杂全无机钙钛矿量子点及其暖白光LED发光性质研究
全无机钙钛矿量子点的表面态调控及其LED研究
紫光发射无机钙钛矿纳米晶的掺杂改性、结构、发光增强机理及器件应用研究
高压调制下过渡离子掺杂型全无机铯铅卤钙钛矿量子点的稳定性、发光性能及调控机理研究