Traditional anodic ozone generation via water electrolysis and cathodic hydrogen peroxide generation via oxygen reduction have the disadvantages of high energy consumption and unwanted side reactions. The present project is proposed based on our previous results on electrochemical cogeneration of ozone and hydrogen peroxide with current efficiency of 11% and 28%, respectively. Ozone is synthesized via oxidation of water on anode while hydrogen peroxide is synthesized via oxygen reduction on cathode. In this project, the rules and mechanisms for the novel electrochemical ozone and hydrogen peroxide cogeneration in one electrochemical cell will be investigated.. The current efficiency and energy consumption for cogeneration of ozone and hydrogen peroxide is proposed to be investigated systematically through the effect of anode materials, cathode materials, electrolyte and membrane. The rules for ozone and hydrogen peroxide cogeneration in one electrochemical cell will be discussed. The electrochemical kinetics will be investigated through steady state polarization curves, while the generated active intermediates during the electrochemical process will be characterized by electrochemical trasient state methods. The electrodes will be characterized to investigate the relationships between their performance and structure and properties. Through the study of kinetics and thermal dynamics of oxygen reduction on cathode and ozone evolution on anode, the mechanisms and kinetic rules for cogeneration of ozone and hydrogen peroxide in one electrochemical cell can be proposed. On the basis of the above kinetics and mechanisms, techniques including the mass transfer improvement and electrode surface modification will be carried out to improve the ozone and hydrogen peroxide cogeneration efficiency.. Through the proposed research, it may set solid experimental and theoretical basics for scaling up the cogeneration of ozone and hydrogen peroxide in one electrochemical cell and it may broaden its applications in environmental engineering and related fields.
传统的电化学阳极氧化分解水产臭氧技术和阴极还原氧产过氧化氢技术存在能耗较高及较多副反应的缺点。本项目基于前期实现了在同一个电解池中协同阳极产臭氧和阴极产过氧化氢的电流效率分别达到11%和28%的基础上,进一步深入研究臭氧和过氧化氢协同产生的规律及机理。. 课题通过研究阳极、阴极、电解质以及隔膜的不同配置方法对协同产生臭氧和过氧化氢的电流效率和能耗的影响,探讨臭氧和过氧化氢电化学协同产生的规律。通过电化学稳态极化曲线研究电极过程动力学,通过电化学暂态技术分析表证电极过程中的活性中间粒子,通过现代分析测试技术研究电极构效关系,结合反应的热力学平衡计算,阐明在同一电解池中协同产生臭氧和过氧化氢的机理及动力学规律。进而改进技术,进一步提高臭氧和过氧化氢协同产生的效率,降低能耗。. 通过该研究,将为臭氧和过氧化氢的高效电化学协同产生技术的放大和实用化提供理论依据并奠定实验基础。
本项目针对传统的电化学阳极氧化分解水产臭氧技术和阴极还原氧产过氧化氢技术存在能耗较高及较多副反应的缺点,提出了耦合阳极分解水产臭氧及阴极还原氧产过氧化氢的电化学技术,并通过研究电解池配置方法、电极材料表征及电化学过程分析等深入研究臭氧和过氧化氢协同产生的规律和机制。.项目按照计划内容实施,系统研究了电解池配置方法、电解参数、电极材料制备及修饰对臭氧和过氧化氢产生效率的影响,阐明了臭氧和过氧化氢协同产生的规律。结果发现,通过施加氟掺杂氧化锡中间层,能极大提高镍锑掺杂二氧化锡电极的稳定性,寿命可达1800小时;溶胶凝胶法制备的掺杂二氧化锡电极结构和稳定性优于涂覆热解工艺;而通过控制涂敷热解制备工艺中的干燥时间可以提高掺杂二氧化锡电极的活性。然而通过掺杂银或者铈,或者用铋代替锑,或者用PTFE复合均难以达到提高镍锑掺杂二氧化锡电极产臭氧的活性。空气扩散阴极基底材料和制备工艺对氧还原制备过氧化氢有较大的影响,研究优化了该制备工艺。同时通过蒽醌修饰该空气扩散阴极可以提高氧气还原产过氧化氢的性能最大达2.2倍。同时通过研究电解过程中产生的自由基等中间产物,讨论了臭氧和过氧化氢协同产生的机理。在机理分析的基础上,通过掺杂二氧化锡阳极修饰强化了臭氧产生的性能,产臭氧的电流效率达到了26%。同时依据本项目耦合电化学技术中阴极反应和阳极反应,实现电化学技术的多功能化的学术思路,开展了微生物电化学系统的新功能开发研究,实现了微生物电化学系统协同处理有机废水和重金属废水或者处理有机废水和产氢,进一步拓展了研究领域。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
基于协同表示的图嵌入鉴别分析在人脸识别中的应用
多空间交互协同过滤推荐
北京市大兴区夏季大气中醛酮类化合物的污染水平、来源及影响
利用协同反演方法反演地震序列滑动分布
空气DBD产生无臭氧氮氧化物的规律及调控机理研究
烯烃臭氧化产生甲酸的关键过程及机理研究
臭氧协同下的电化学双极氧化技术
非碱性过氧化氢高效产生低水气含量的单重态氧