Mining caused environmental problems of resource-exhausted cities become increasingly significant. Environmental problems caused by coal mining are the most prominent and devastating. All of those promote study of environmental issues in coal mining subsidence areas to become a focus and difficult in geology and environment fields. It is an urgent need for a systematic in-depth study of its environmental evolution monitoring, subsidence mechanism and prediction. In this subject, it intends to research for environmental problems classification and causes of coal mining subsidence, remote sensing image preprocessing and establishment of interpretation keys of environmental factors, dynamic monitoring for environment of coal mining subsidence, and mechanical mechanism and prediction of ground subsidence in typical mining area by using methods of field survey, spectral measurement and sampling, remote sensing interpretation, numerical simulation and similar material simulation experiments etc.. This subject will discuss key scientific issues such as establishment of radiometric correction models and selection of fusion methods, establishment of interpretation keys and automatic extraction of environmental factors, and establishment of dynamic prediction formula of ground subsidence. Achievements of this subject can enrich theory and methods of mine environmental evolution and subsidence mechanism research, provide a strong theoretical basis for ecological reconstruction of coal mining subsidence areas and effective protection of geological environment. Moreover, it has practical significance for sustainable development of resource-exhausted cities and can improve environmental quality of the surrounding areas, with reference to the environment monitoring and subsidence prediction of other similar mines.
资源枯竭型城市煤炭开采引发的环境问题最为突出且破坏性大,促使采煤沉陷区的环境问题研究成为地质、环境等领域的热点和难点,迫切需要对其地表环境演化监测、沉陷机制及预测进行系统深入研究。本课题拟以实地调查、野外光谱测试及取样、遥感解译、数值模拟、相似材料实验等方法进行典型采煤沉陷区遥感图像预处理及环境要素解译标志建立、采煤沉陷区地表环境动态演化监测、地面沉陷机制及预测等方面的研究,探讨遥感影像辐射校正模型建立与融合方法选取、解译标志建立与环境要素自动提取方法和采煤沉陷动态预测公式建立等关键科学问题。本课题的研究成果可丰富矿山环境演化遥感监测和塌陷机制研究的理论和方法,对资源枯竭型城市的可持续发展及提高环境质量有重要的现实意义,对其他类似矿山的地表环境监测与采煤沉陷预测具有借鉴意义。
资源枯竭型城市煤炭开采引发的环境问题最为突出且破坏性大,促使采煤沉陷区的环境问题研究成为地质、环境等领域的热点和难点,迫切需要对其地表环境演化监测、沉陷机制及预测进行系统深入研究。为此,借助于国家基金资助,课题组以宁夏石嘴山矿区及山西郭庄煤矿铁路专线为研究对象,采用实地调查、光谱及取样测试、遥感解译、数值模拟、相似材料试验等方法进行典型采煤沉陷区遥感图像预处理及环境要素解译标志建立、采煤沉陷区地表环境动态演化监测、地面沉陷机制及预测等方面的研究。得到以下研究成果:(1)提出了适用于采煤沉陷区不同源高分遥感影像纠正、融合、镶嵌等预处理方法,结合定性、定量评价结果得到QuickBird数据的最优融合法为GS法、WorldView-2和高分二号数据的最优融合法为PCA法;(2)对典型地物进行野外取样并进行水质及岩土成分分析测试,结合实测光谱与高光谱遥感影像光谱对比分析结果,建立了典型地物的遥感解译标志;(3)建立了典型地物自动提取模型,基于最大似然法和多尺度面向对象法,采用人机交互解译方法对研究区不同时相遥感影像进行解译,提取了环境要素信息,通过分析地表环境变化矩阵实现了动态演化监测;(4)分别建立了地面沉陷离散元模型和FLAC-3D数值模型并进行数值模拟,分析了开采过程中煤层顶底板应力分布情况和位移变化,并进行了相似材料物理模型试验,研究地面沉陷的变形破坏机制及其形成的动态过程。在此基础上,基于概率积分法预计模型,进行了研究区不同时期地面沉陷时空演化规律研究,分析其发展趋势,并与数值模拟和基于DEM叠加分析结果相互验证。.本课题的研究成果可丰富矿山环境演化遥感监测和塌陷机制研究的理论和方法,对资源枯竭型城市的可持续发展及提高环境质量有重要的现实意义,对其他类似矿山的地表环境监测、采煤沉陷机制及预测具有借鉴意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
农超对接模式中利益分配问题研究
内点最大化与冗余点控制的小型无人机遥感图像配准
基于细粒度词表示的命名实体识别研究
基于图卷积网络的归纳式微博谣言检测新方法
煤矿区甲烷排放遥感监测模型与方法研究
煤柱群下重复采动覆岩与地表沉陷机理与预测模型研究
面向矿区沉陷监测的SAR影像信息提取关键技术研究
基于分布式CCD/GPS的矿区沉陷灾害动态监测融合算法研究