Glioma is one of the most common types among all primary tumors in central nervous system, with the high rates of disability and death. Even with current advances in adjunctive therapies, including radiation, chemotherapy, and various clinical trials of gene therapy and immunotherapy, surgical resection, with the goal of maximal tumor removal, is now standard of care for the overwhelming majority of newly diagnosed gliomas. However, at present the recognition that duration of survival may not be the only goal of treatment has resulted in health-related quality of life to become an important outcome. It is generally acknowledged that the benefits of longer survival due to tumor treatment should be weighed against side effects of treatment which may have a negative impact on the patient’s functioning in physical, psychological, and social aspects. Therefore, the aim of treatment of glioma (especially glioma in brain functional region) is not only to prolong life, but also to prevent deterioration of health-related quality of life as much as possible. In order to achieve this goal while minimizing the risk of postoperative neurologic deficits, it is important for neuroradiologist and microneurosurgeon to presurgically determine the scope of the glioma invasion and localization of brain function area. In this project, the animal models with glioma will be established and the patients with glioma will be recruited. After the acquisition of multimodal MRI (1H-MRS/fMRI/DTI), we will investigate the accurate extent of glioma based on 1H-MRS technology, and the exact localization of brain functional regions based on fMRI/DTI technology. And then, we will estimate that the image-based neuronavigation enables optimal visualization of the exact location of tumor and the brain function regions. These results may provide the scientific evidence for the optimally neurosurgical treatment strategy. It can contributes to ideal presurgical planning and precise intraoperative image guidance for maximal safe resection of cerebral gliomas in brain functional area, thereby increasing the long-term survival while improving the quality of life of glioma patient.
脑胶质瘤是人类最常见的中枢神经系统原发性肿瘤,具有高致残率及高复发率的特点,严重影响患者的生活质量,甚至导致患者死亡。手术切除是脑胶质瘤的首选治疗方法。最大范围地安全切除肿瘤是脑胶质瘤(尤其是脑功能区的胶质瘤)治疗的首要原则,然而,术前如何确定脑胶质瘤浸润范围及定位脑功能区是神经放射学及显微神经外科学亟待解决的问题。本项目在前期研究及临床实践的基础上,拟采用无创性的多模态MRI技术,以脑胶质瘤的动物模型及患者为研究对象,探讨:⑴基于1H-MRS技术评价脑胶质瘤浸润范围的准确性;⑵基于fMRI/DTI技术精确定位脑功能区的可行性;⑶基于多模态MRI技术引导切除脑功能区胶质瘤的可行性及准确性。以此实现最大程度地切除肿瘤和保护脑功能区的目的,从而延长患者的生存时间,提高患者的生活质量。
脑胶质瘤是中枢神经系统最常见的原发性恶性肿瘤,严重影响患者的生活质量,甚至导致死亡,采用最大范围地安全切除肿瘤是脑胶质瘤(尤其是脑功能区的胶质瘤)首选的治疗原则,但因其具有浸润性生长特性,肿瘤细胞侵入周围脑实质,造成手术难以完全切除,因此,术前精确定位脑胶质瘤浸润范围及脑功能区显得非常重要。本项目按研究计划执行,⑴通过建立脑胶质瘤大鼠模型,证实了肿瘤区1H-MRS表现为NAA下降和Cho增高,Cho/Cr及Cho/NAA比值均大于正常脑白质,与病理对照,得出磁共振波谱Cho/NAA与肿瘤细胞浸润程度有关;⑵DTI检查发现脑胶质瘤大鼠模型肿瘤区FA值较对侧正常组织减低,通过采用同一切面的FA图、DTI图及病理切片图研究发现,得出随着FA值减小,肿瘤浸润程度增加,瘤周水肿区FA值较对侧正常组织明显减低,通过fMRI/DTI技术可精确定位脑胶质瘤邻近的脑皮质功能区及神经纤维束;⑶在临床应用上,通过多模态MRI技术引导切除脑功能区胶质瘤,详细记录手术过程,标记肿瘤邻近重要脑功能结构及周围组织浸润情况,取得胶质瘤组织及瘤周组织进行病理及实验室检查分析,并对患者进行随访,得出基于多模态MRI技术引导切除脑功能区胶质瘤延长了患者的生存时间,改善了患者的生活质量,具有重要的临床应用价值。本项目共发表SCI论文4篇;申请发明专利1项;撰写书籍一部《中枢神经系统MRI和CT诊断图解》;举办医学继续教育项目《脑肿瘤影像学新进展研讨会》一次;培养毕业研究生5名。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
桂林岩溶石山青冈群落植物功能性状的种间和种内变异研究
湖北某地新生儿神经管畸形的病例对照研究
动物响应亚磁场的生化和分子机制
多源数据驱动CNN-GRU模型的公交客流量分类预测
双靶向肿瘤多模态纳米分子探针用于手术导航技术指导脑胶质瘤精确切除的研究
基于多模态MRI技术构建脑胶质瘤个体化放疗生物靶区的研究
基于多模态信号的脑机交互及临床应用研究
KIBRA基因多态性调控AD患者脑结构和功能神经机制的多模态MRI研究