Type II antimonide interband cascade laser is a novel semiconductor laser which bases on quantum engineering and combines interband transition and cascade transport. It has uniform carrier injection, high quantum efficiency, easy-to-tune detection wavelength, low threshold current and power. Due to the important application and great needs of 3~5 μm semiconductor lasers in military and civil field, this program will combine theory simulation, molecular beam epitaxy growth, device fabrication and characterization to study the 3~5 μm InAs-based type II interband cascade laser. The InAs/GaInSb/InAs W-structure interband cascade method will be used to reach a low power 3~5 um semiconductor laser and the InAs material, with high thermal conductivity and low optical index, will be applied as the waveguide layer and separate confinement layer to solve the heat diffusion and optical field confinement. This program aims to solve the problem of relative material growth, the cascade structure design and the interface control in antimonide material, explore the impact of structure design and material growth on laser device performance, which is very important to illustrate the material growth mechanism, the work mechanism for type II interband cascade laser and improve the device performance. Finally, a prototype 3~5 μm InAs-based type II interband cascade laser will be demonstrated.
锑化物二类带间级联激光器是基于量子工程并结合带间跃迁和级联输运的新型半导体激光器,具有载流子注入均匀、量子效率高、波长易调节、阈值电流和功耗低等优势。本项目针对3~5微米激光器在军事和民用领域的重要应用和巨大需求,结合理论模拟、分子束外延生长、器件制备和性能表征等技术开展3~5微米InAs基中红外二类带间级联激光器的研究。通过采用W型InAs/GaInSb/InAs结构的带间级联方法以实现低功耗3~5微米半导体激光器,将高导电率和低折射率InAs材料作为波导层和分别限制层以解决半导体激光器在该波段的散热和光场限制问题。重点解决相关材料生长,二类带间级联结构设计和锑化物材料界面控制等关键技术,探索结构设计和材料生长对器件性能的影响;对阐明InAs材料生长机制、该激光器的物理工作机制及提高激光器的性能具有重要意义,最终研制InAs基3~5微米中红外二类带间级联激光器原型器件。
本项目主要研究锑化物二类带间级联激光器及探测器的相关问题,主要针对3-5微米激光器在军事和民用领域的重要应用和巨大需求,结合理论模拟、分子束外延生长、器件制备和性能表征等技术开展3~5微米InAs基中红外二类带间级联激光器的研究。重点解决相关材料生长,二类带间级联结构设计和锑化物材料界面控制等关键技术,探索结构设计和材料生长对器件性能的影响,最终研制出了3-5微米中红外二类带间级联激光器原型器件,并将激光器波长拓展到5.4微米。结合InAs和AlSb的折射率和能带结构,设计出了波导层的结构。对于有源区的设计进行了优化,材料晶格需要与GaSb衬底进行匹配而非与之间的InAs衬底匹配,在级联结构中,设计出InAs/AlSb多量子阱结构,同时设计出插入相应的界面,以获得晶格匹配的外延器件材料;考虑到激光器的散热问题,进行了双面镀金的工艺制作,提高器件的散热能力,以研究脊宽对器件性能的影响;开展了GaSb基长波红外带间级联探测器的研究,器件包含了三级带间级联结构,其中吸收区采用长波InAs/GaSb超晶格结构,级联区包含了电子势垒区和空穴势垒区,而空穴势垒区由多个InAs/AlSb量子阱结构组成,电子势垒区由多个GaSb/AlSb量子阱结构组成,在77K温度下,50%截止波长为8.48微米,对应的峰值响应率为0.93 A/W,暗电流密度仅为6.25e-4 A/cm2,动态电阻与面积乘积为977.27Ωcm2,探测率为1.12e11 Jones。通过采用了级联结构,器件在260K工作,接近室温目标。在该温度下,50%截止波长红移至11.52微米,暗电流为21.55 A/cm2,动态电阻与面积乘积为0.13Ωcm2,探测率为5.02e8 Jones。本工作发表在Journal of semiconductors,第一标注,同时被选为本期封面文章。
{{i.achievement_title}}
数据更新时间:2023-05-31
Protective effect of Schisandra chinensis lignans on hypoxia-induced PC12 cells and signal transduction
Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation
Intensive photocatalytic activity enhancement of Bi5O7I via coupling with band structure and content adjustable BiOBrxI1-x
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
Engineering Leaf-Like UiO-66-SO_3H Membranes for Selective Transport of Cations
3.3微米中红外带间级联激光器材料生长与器件制备
GSMBE 1.55微米 InAs/InGaAsP 量子点激光器材料与器件
基于MOCVD高性能1.55微米InAs/InP自组织量子点材料生长及激光器应用研究
GaAs基2微米波段亚原子层量子点材料生长与激光器研制