The accuracy, real-time and reliability of localization system which focuses on the moving target such as downhole people, machines and other objects are of great significance to the intelligent safety and efficient production of mines. This project studies the passive location theory and key technologies of moving objects in the mine working face, which aims at solving the problem of the decimeter level localization of men and machines and accurate centimeter level recognition of the mechanical equipment status of the coal mine working face in the process of unmanned mining, in order to solve the difficulties of target localization and identification with high-precision and low-cost in mine working face. This project plans to carry on the research from the following four aspects: 1) Harmonic backscattering and beamforming anti-multipath-interference theoretical model is proposed using passive broadband harmonic backscattering tags; 2) A phase difference ranging method is proposed based on continuous sweeping broadband multi-frequency continuous wave to solve the problem of fuzzy distance and poor LOS signals in mine working face; 3) a spatial diversity and frequency diversity method is proposed to achieve a complete sampling coverage in Fourier domain of the object reflectivity function by passive broadband harmonic tags as landmark tags; 4) A verification platform of precise passive localization of moving objects is established to realize the decimeter level localization of men and machines and the accurate recognition of the mechanical equipment status of the coal mine working face. This study will provide technical support for the men and machines localization and identification of unmanned mining in the mines, thus having important theoretical significance and practical application value.
井下人、机、物等动态目标定位系统的精确性、实时性和可靠性,对矿井智能化安全、高效生产具有重要的意义。本项目针对无人化开采过程需要解决的矿井工作面人机装备分米级定位和机械装备姿态厘米级准确识别的问题,研究矿井工作面动目标无源定位理论和关键技术,以求解决矿山工作面高精度、低成本定位与识别难题。本项目拟从以下四个方面开展研究:1)采用无源宽带谐波反向散射标签,提出谐波反向散射及波束成形抗多径干扰理论模型;2)提出连贯扫射宽带多频连续波相位差测距方法,解决矿井工作面距离模糊和LOS信号弱的问题;3)利用无源宽带谐波标签作为参考标签,提出目标散射函数傅里叶域采样点完整覆盖的空间分集和频率分集方法;4)建立矿井动目标无源精确定位验证平台。实现对矿井工作面人机装备分米级定位和机械装备姿态准确识别,为今后矿山无人开采的人机定位与识别提供技术支持,具有重要理论意义和实际应用价值。
依托国家自然基金青年科学基金项目“矿井动目标无源精确定位理论与关键技术”(51804304),面向矿山无人化开采过程需要解决的矿井工作面人机装备分米级定位和机械装备姿态厘米级准确识别的问题,研究了矿井工作面动目标无源定位理论和关键技术,课题主要工作总结如下:.1)建立了基于无源谐波反向散射的抗干扰模型,利用谐波标签生成可利用的谐波信号通过上、下行链路的频率分集,抑制矿井密集多径干扰,通过传统标签与谐波标签的仿真对比分析谐波标签的抗干扰能力; .2)在建立无源谐波反向散射抗干扰模型的基础上,提出了连贯发射宽带多频连续波相位差测距算法。为了最大化相位误差的容忍度,利用遗传算法产生适用于井下的最优频率组合;通过连贯发射多频连续波和有约束的最小均方误差的方法解决距离模糊问题,完成大相位误差条件下的测距、定位和识别,实现了矿井工作面有标签目标和参考标签相位差测距中的距离模糊问题。.3)提出一种角度(空间)和频率分集联合的矿井无标签目标定位方法。采用无源宽带谐波标签,生成所需谐波信号;利用不同标签的角度(空间)多样性和谐波信号的频率多样性,融合多通道信息,实现角度(空间)和频率分集联合,解决采样信息不足导致的低精度定位问题;利用差分接收算法抑制下行链路多径干扰,消除多径引起的相位误差,实现了矿井无标签目标高精度定位。.4)建立了矿井动目标无源精确定位实验验证系统,对课题中所提出的通信优化算法进行了硬件仿真和测试,验证了课题所取得的理论成果的有效性。.项目组成员在国内外学术期刊和会议上发表高水平论文13篇,其中SCI期刊论文5篇,EI期刊论文2篇,核心论文3篇,会议论文3篇。授权发明专利1项,申请发明专利6项。培养博士研究生3人,硕士研究生9人。通过该课题的研究,提高了对矿井工作面人机装备分米级定位和机械装备姿态准确识别,奠定矿山无人开采的人机定位与识别提供技术基础,为智慧矿山的建设提供有力的理论和技术支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
基于多模态信息特征融合的犯罪预测算法研究
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
掘进工作面局部通风风筒悬挂位置的数值模拟
煤矿工作面动目标精确定位关键技术研究
面向矿井动目标跟踪的新型惯性协同测量理论与方法研究
无源感知网络基础理论与关键技术
无源传输网络理论与关键技术