Lower limb prosthesis is a complex human-machine drive system. Too strong constraint is not allowed between the stump and prosthesis, otherwise the effect and comfort will be influenced, and even the stump will be damaged again. However, the current prosthesis research is focused on the bionic study of lower extremity motion, and is lack of sufficient attention and compensation measures to kinematic compatibility between human and prosthesis. In order to solve these problems, this project proposes a control method of human-machine kinematic compatibility based on surface electromyography (EMG) of stump..Firstly, functional network of stump muscle will be built based on the theory of complex network, and the EMG recording spots will be fixed with marked changes in compatibility recognition task. Secondly, the causality network will be built among EMG, contact force and kinematic compatibility, and the evolution mechanism of causality between stump EMG and human-machine kinematic compatibility will be revealed. Finally, the time-dependent and state-dependent event-triggered condition will be designed, and a control strategy of lower limb prosthesis based on event-triggered scheme will be proposed to control the human-machine kinematic compatibility adaptively..With the successful implementation of this project, it is expected to provide a more safe and comfortable control method of prosthesis for patients with lower extremity amputation. Meanwhile, it will also provide important theoretical and technical supports for the human-prosthesis harmonization, and the interoperability improvement of similar human-machine systems.
下肢假肢是复杂的人机共驱动系统,残肢与假肢之间不能出现过强的约束作用,否则将会影响穿戴效果和舒适性,甚至会对残肢造成二次损伤。然而,目前假肢研究主要集中在下肢运动仿生研究,对人与假肢的运动相容性缺乏足够的重视和补偿措施。因此,本项目提出一种基于大腿残肢表面肌电信号(EMG)的人机运动相容性调控方法。. 首先,基于复杂网络理论构建残肢肌肉功能连接网络,确定相容性识别任务中激活程度变化显著的肌电采集位置;接着,构建肌电、接触力与运动相容性的因果关系网络,揭示残肢肌电与人机运动相容性间的因果关系演化机理;最后,设计状态依赖与时间依赖的复合型事件触发条件,提出基于事件触发机制的下肢假肢控制策略,实现人机运动相容性的自适应调控。. 本项目的顺利实施,有望为下肢截肢患者提供一种更舒适和安全的假肢调控方法,为实现人和智能假肢共融、提高类似人机系统的协同工作能力提供理论基础和关键技术。
动力下肢假肢是复杂的人机共驱动系统,残肢与假肢之间不能出现过强的约束作用,否则将会影响穿戴效果和舒适性,甚至会对残肢造成二次损伤。本项目针对动力假肢的人机运动相容性问题进行攻关,重点解决常见运动不相容状态的自适应调节问题,为实现人和智能假肢的真正融合建立良好基础。.首先,利用复杂网络理论和非线性动力学方法,将大腿残肢肌群复杂系统抽象成残肢肌肉功能连接网络,确定相容性识别任务中残肢肌群激活程度变化显著的肌电采集位置,充分挖掘残余肌肉蕴含的神经动力学信息,为残肢神经控制与身体运动的关系解码提供了新思路和新方法。接着,利用收敛交叉映射法分析残肢各通道肌电间的有效连通性和因果关系变化规律,构建残肢肌肉有效连接网络,揭示残肢肌电与人机运动相容性间的因果关系演化机理,从理论层次解读残肢运动系统神经调节规律。最后,提出基于残肢肌电的运动相容性识别方法,设计基于导纳模型的运动相容性补偿器,提出基于事件触发机制的人机运动相容性补偿调控方法,显著减少信息传输和任务执行次数,有效地提高假肢穿戴者的舒适感,增强患者对假肢的适应和掌控能力。.本项目从人体的主观感觉出发,提出一套人机运动相容性补偿调控的理论体系,构建下肢残肢肌肉功能连接网络和有效连接网络,解决残肢肌电电极的位置选择、肌电与运动相容性的因果关系等关键问题,理论成果得到推广后可以有效提升动力假肢的穿戴舒适性和安全性,提升现有产品的性能。同时为肌电研究提供了载体与平台,为提高类似人机系统的协同工作能力提供了新的理论方法和关键技术。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于SSVEP 直接脑控机器人方向和速度研究
内点最大化与冗余点控制的小型无人机遥感图像配准
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
基于运动单元动作电位序列的肌电解码与假肢连续运动控制
电刺激诱发肌梭感受器响应的肌电假肢手运动自主感知研究
动力型下肢假肢运动状态识别与协调控制方法研究
智能下肢假肢肌电信号识别与控制机理研究