In this paper, focusing on the basic theory of high transmission ratio and high performance precision transmission for industrial robots, an innovative space planetary cycloidal gear drive with small tooth difference is proposed. For its core parts-cycloidal face gears, coupling design methodology considering both geometric and physical performances is studied. In terms of transmission principle and mechanism, by applying the advantages of face gear drive to planetary differential transmission and cycloid profile, the new mechanism of large transmission ratio precision transmission and the correct meshing conditions are discussed. The new transmission has the advantages of small size and compact structure compared with RV under the same transmission ratio. In terms of digital design theory, 1) an equal meshing angle discretization algorithm based on envelope-pixel theory is proposed, and the corresponding accurate digital model for theoretical machined tooth surface of cycloidal face gears is obtained. 2) Considering the coupling effect of multi-physical fields in the grinding process system, the method of predicting the tooth surface micro-topography of cycloidal face gear, and the method of accurately extracting the geometric reference data of tooth point cloud with equal meshing angle are discussed. 3) The transmission performance parameters such as transmission accuracy and meshing efficiency, based on the mapping of the point cloud data of tooth surface, are analyzed. The coupling design model considering both geometric and physical performances is established, which is different from the current research status of “the design and manufacturing of precision gear are obviously disconnected, which affect the active controllable manufacturing of tooth surface”.
项目围绕工业机器人大传动比高性能精密传动基础理论,提出一种少齿差空间行星摆线面齿轮精密传动新构型、及其核心零部件-精密摆线面齿轮的形性耦合设计方法。在传动原理与构型方面,通过把面齿轮传动优势应用于行星差速传动及摆线齿廓造型上,探讨该传动机构的大传动比精密传动新构型及空间啮合原理,区别于RV精密减速器,在保证相同传动比的条件下,具有小尺寸、结构紧凑等优势;在数字化设计理论方面,1)提出包络-像素等啮合角离散化算法,获得摆线面齿轮理论制造齿面的等啮合角数字化精确模型。2)考虑工艺系统多物理场耦合作用影响,探讨摆线面齿轮制造齿面微观形貌预测及其等啮合角齿面点云形位基准数据的精确提取方法。3)分析齿面微观形貌点云形位基准数据映射下的传动精度、啮合效率等传动性能参数,建立该新型传动的形性耦合设计理论模型。区别于“精密齿轮齿面设计过程与制造工艺优化过程分离,影响形性主动可控制造”的研究现状。
项目围绕工业机器人大传动比高性能精密传动基础理论,提出一种少齿差空间行星摆线面齿轮精密传动新构型、及其核心零部件-精密摆线面齿轮的形性耦合设计方法。在传动原理与构型方面,1)通过把面齿轮传动优势应用于行星差速传动及摆线齿廓造型上,设计了由行星滚轮、摆线面齿轮、行星架(壳体)等核心零部件组成的新型精密传动构型。该结构的左、右两个少齿差面齿轮采用“面对面”的安装形式,通过与公共行星滚轮的差速共轭啮合运动,实现行星架的大传动比减速输出。2)探讨了该传动机构的大传动比精密传动新构型及空间啮合原理,区别于RV精密减速器,在保证相同传动比的条件下,具有小尺寸、结构紧凑等优势;在数字化设计理论方面,1)提出了包络-像素等啮合角离散化算法,获得了摆线面齿轮理论制造齿面的等啮合角数字化精确模型。2)研究了磨削力、磨削热、砂轮形貌等多参数耦合作用下,面齿轮齿面微观形貌的精确预测方法,并精确提取了等啮合角齿面点云形位基准数据、接触线形位基础数据、齿面几何误差等基础数据。3)通过建立了齿面微观形貌影响下面齿轮齿面点云形位基准数据与齿面磨削温度、啮合间隙等性能参数的形性耦合设计模型,实现“齿面点云-传动性能参数”间的等啮合角一一精准映射下的形性耦合设计。研究结果区别于“精密齿轮齿面设计过程与制造工艺优化过程分离,影响形性主动可控制造”的研究现状,为精密减速器的传动品质提升提供有益借鉴。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
基于分形L系统的水稻根系建模方法研究
监管的非对称性、盈余管理模式选择与证监会执法效率?
硬件木马:关键问题研究进展及新动向
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
双曲柄输入平行轴式少齿差行星齿轮传动研究
少齿差变齿厚RV行星精密传动研究
两齿差外啮合双联行星齿轮传动系统动力学特性研究
套筒活齿少齿差传动装置的研制开发