The IEEE 802.11ax standard based Wireless Local Area Network (WLAN), i.e., the next generation WLAN, is expected to provide throughput of more than 10 Gbps. Recent years, the increasingly growth in the number of the WiFi devices with multiple network interfaces, including portable computers and smart phones, brings in a challenge to connect dense WiFi devices to the WLAN and transfer data across heterogeneous networks. To cope with this challenge, we, aiming at the next generation WLAN, investigate the following problems: 1) High energy-efficiency, anti-interference, and disater-resistance deployment of Access Points (APs) and cooperation between APs, which target to improve WLAN’s performance and make WLAN operate with lower energy consumption and sustainability; 2) Channel assignment schemes supporting large-scale WiFi devices and having the property of high usage rate and fairness, which improve network throughput and energy efficiency; and 3) Efficient schemes of transferring data in the environment of coexistence of WLANs, cellular networks, and Wireless Personal Area Networks (WPANs), which move data with high efficiency and reliability using the inherent merits of the related networks. This project is important for the next generation WLAN to be efficiently deployed and applied in China.
基于IEEE 802.11ax标准的下一代无线局域网络(Wireless Local Area Network, WLAN)将提供10 Gbps以上吞吐率。近年来,配置多个网络接口的WiFi设备(如便携电脑、智能手机等)数量的剧增,使得WLAN面临着WiFi设备高密度接入以及跨越异类网络高效传递数据这一挑战性问题。为了应对这一挑战,本项目瞄准下一代WLAN,研究:1. 高能效、抗干扰、抗自然灾害的接入点(Access Point, AP)部署和协同工作方案,以提高WLAN性能,使整个网络低能耗可持续运转;2. 面向大规模WiFi设备、信道利用率高、低能耗、公平的信道分配策略,以提高网络的吞吐率和能效;3. WLAN与蜂窝网络和无线个域网络三网共存环境高效数据迁移策略,以最大限度地利用相关网络的内在优点,实现数据高效和可靠传递。本项目对于下一代WLAN在我国的高效部署和应用具有重要意义。
本项目针对下一代无线局域网络(WLAN)所存在的挑战性问题开展研究,主攻:1) 高能效、抗干扰、抗自然灾害的接入点(AP)部署和协同工作方案;2)面向大规模WiFi设备、信道利用率高、低能耗、公平的信道分配策略;3) WLAN与蜂窝网络和无线个域网络三网共存环境高效数据迁移策略。所采用的理论与方法主要有:概率论、随机建模、最优化理论与方法等。..所取得研究成果包括:1)针对基于IEEE 802.11ax标准的下一代无线局域网络,利用IEEE 802.11ax标准支持的TWT (Target Wait Time)机制和UORA(Uplink OFDMA-based Random Access)机制,提出了SCAT无竞争信道分配方案,该方案能提高网络吞吐率;2)针对802.11ax标准接入信道的退避机制,提出了概率补偿传输PCTS和重传次数感知的信道接入方案;3)提出了HiTRAS,使AP能够最优分配资源单位(RU),使网络吞吐率最大;4)针对能量捕获节点所面临的分配能量捕获时间和数据传输时间困难,提出了即时数据传输方案TDD,以低时延传输数据;5)针对因移动便携设备数量的急剧膨胀所导致的IEEE 802.11ax无线局域网络呈现密集部署且与长期演进LTE(Long Term Evolution)系统共存的趋势,提出了吞吐量感知的用户分派方案TAUD,使共存环境中802.11ax无线局域网络与LTE系统吞吐量之和最大;6)针对IEEE 802.11ax无线局域网密集部署场景,提出了基于模糊控制的OBSS/PD调整方案,使用模糊逻辑控制方法,提高密集部署网络的吞吐率。..本项目按计划进行,进展顺利;在包括《IEEE Transactions on Wireless Communications》、《IEEE Transactions on Communications》、《IEEE Internet of Things Journal》、《IEEE Transactions on Vehicular Technology》、《Chinese Journal of Electronics》在内的国内外重要期刊和学术会议上发表学术论文17篇;申请了发明专利2项(其中1项已经获得授权)。
{{i.achievement_title}}
数据更新时间:2023-05-31
Ordinal space projection learning via neighbor classes representation
基于纳米铝颗粒改性合成稳定的JP-10基纳米流体燃料
Image super-resolution based on sparse coding with multi-class dictionaries
Phosphorus-Induced Lipid Class Alteration Revealed by Lipidomic and Transcriptomic Profiling in Oleaginous Microalga Nannochloropsis sp. PJ12
Numerical investigation on aerodynamic performance of a bionics flapping wing
密集接入环境下无线局域网的频谱与信道接入关键技术研究
下一代异构无线局域网的性能优化理论研究及应用
高速无线局域网的红外PPM信道研究
下一代无线接入互联网的基础技术研究