Aimed at the high-efficiency fixing problem of specimens in the mechanical test of novel micro-nano-material (such as graphene and micro-nano-fiber) with large sample, a novel clamp-based fixing method of micro-nano-material is proposed in this project, which focuses on the researches supporting the proposed method, including the geometrical nonlinear design of piezoelectric-driven compliant microgripper and the sensing of clamp. In this project, based on the research on the influence mechanism of geometrical nonlinearity to the displacement properties of compliant orthogonal single-stage displacement amplification mechanism (SSDAM) with single force input, the configuration synthesis of orthogonal SSDAM with single force input and the compensation of output parasitic movement considering geometrical nonlinearity are conducted. Since the frequency of forced chattering equals to the excitation frequency, which benefits to the recognition in strong noise, a high-precision robust measurement mechanism and method of micro grasping force based on the forced chattering characteristics of piezoelectric cantilever integrating the actuator and sensor is discovered. Through the nonlinear modeling of micro-scale forces and the experimental analysis, the formulation principles of clamping force in the typical mechanical test of micro-nano-material and the sensitivity to the structural parameters are researched. The implement of project will improve the efficiency of mechanical test for the novel micro-nano-material (such as graphene and micro-nano-fiber) signicantly, benefiting the development of material science and technology as well as sensing technology in robotics.
针对石墨烯、微纳纤维等新兴微纳材料大样本力学测试中的高效样品固定问题,本项目提出新型夹固式微纳材料固定方法,着力对支撑新型方法的压电驱动柔顺微夹钳的几何非线性设计与夹固感知进行研究。项目在研究几何非线性对单力输入单级柔顺正交位移放大机构位移特性作用机制的基础上,考虑几何非线性研究机构的构型综合与输出寄生位移补偿设计;同时,利用强迫颤振频率等于激振频率,在强噪声背景下易于识别的特性,探索基于驱动传感一体压电悬臂梁强迫颤振特征的微夹持力高精度鲁棒检测机制与方法;通过微尺度力非线性建模与实验分析,探究典型微纳材料力学测试中夹固力区间范围的形成规律与对结构参数的敏感性。项目的实施将显著提升石墨烯、微纳纤维等新兴微纳材料的力学测试效率,对推动材料科学与技术、机器人传感技术的发展具有重要意义。
针对微纳纤维等新兴微纳材料大样本力学测试中的高效样品固定问题,本项目提出新型夹固式微纳材料固定方法,着力对支撑新型方法的压电驱动柔顺微夹钳几何非线性设计与夹固感知进行研究。围绕压电驱动柔顺微夹钳几何非线性问题,项目提出了一种位移增益随输入力增大的单力输入单级柔顺正交位移放大机构,以及柔顺正交位移放大机构两步法半解析非线性建模方法,并考虑几何非线性研究机构输出寄生位移的补偿设计;项目提出了一种基于压电悬臂梁高频低幅值主动振动的微尺度力传感器,利用叠加传感电压频率等于激振频率,在强噪声背景下易于识别的特性,实现微尺度力高精度鲁棒检测;项目提出了基于柔顺铰链拓扑优化的桥式位移放大机构,并对柔顺正交二级杠杆位移放大机构进行系统性设计与分析,进而搭建了微纳纤维弹性模量快速高精度通用测量系统,以实验探究微纳纤维拉伸测试中夹固力区间范围的形成规律与对结构参数的敏感性。项目的成果将显著提升石墨烯、微纳纤维等新兴微纳材料的力学测试效率,对推动材料科学与技术、机器人传感技术的发展具有重要意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于改进LinkNet的寒旱区遥感图像河流识别方法
带有滑动摩擦摆支座的500 kV变压器地震响应
基于旋量理论的数控机床几何误差分离与补偿方法研究
基于腔内级联变频的0.63μm波段多波长激光器
超声无线输能通道的PSPICE等效电路研究
可自感知钳指位移与夹持力的4自由度压电微夹钳的研究
压电驱动空间柔顺并联纳米定位平台性能图谱研究
基于应力约束的分布式柔顺机构几何非线性拓扑优化设计方法研究
压电驱动细胞分选微泵操控机理及设计