The spatial nanopositioning stage (NPS) is the significant, universal and fundamental equipment for the ultra-precision machining, micro/nano manipulation, atomic force microscopy (AFM), nanoimprint lithography and fiber docking. Traditional design approaches confront several bottlenecks, such as the multi-kinematic-chain coupling, incomplete performance evaluation indexes and inadequate optimization. This project aims at the piezoelectric-actuated spatial compliant parallel NPSs. Firstly, double-axis notch flexure hinges (NFHs) are analyzed. Displacement-transferring performance indexes of multiple configurations are compared. According to different ranges of key structural parameters, the corresponding high-accuracy and high-efficiency six-dimensional compliance matrixes are derived. Secondly, the spatial three/six-kinematic-chain compliant parallel mechanisms (CPMs) are investigated. The multi-dimensional cross-coupling nonlinear mapping relationships between the performance atlas and structural parameters are analyzed. The formational mechanism on the performance atlas of the spatial CPM is built. Based on the whole performance atlas, the design approach of the CPM is proposed. Finally, the spatial three/four-degree-of-freedom (3/4-DOF) NPSs are studied. Considering the coupling mechanisms of the mechanism body, piezoelectric actuator, external load, and servo-control units, the formational mechanism on the performance atlas of the piezoelectric-actuated NPS is built. Based on the partial performance atlas, the performance optimization approach of the NPS is presented. The project would propose a precise, exact, high-efficiency and comprehensive formational mechanism of the performance atlas, which lays the theoretical foundation for improving the performance of spatial NPSs and fulfilling the more diversified and complicated performance demands of application cases.
空间纳米定位平台,是超精密加工、微/纳操作、原子力显微测量、纳米压印、光纤对接等领域关键共性基础部件,传统设计方法面临多支链耦合、性能评价指标不全面、优化不充分等瓶颈问题。本项目以压电驱动空间柔顺并联纳米定位平台为研究对象。首先,分析双轴缺口型柔顺铰链,对比多种构型位移传递性能,推导跨尺寸段高精度、高计算效率的六维柔度表征矩阵;其次,针对空间三/六支链柔顺并联机构,重点研究性能图谱与结构参数之间的多维交叉非线性映射关系,建立柔顺并联机构性能图谱生成机制,提出基于全域性能图谱的机构设计方法;最后,围绕空间三/四自由度纳米定位平台,分析机构本体-压电驱动-外部负载-伺服控制多重耦合机理,构建压电驱动纳米定位平台性能图谱生成机制,提出基于局部性能图谱的平台优化方法。项目预期可建立精准、高效、全面的性能图谱生成机制,为提高空间纳米定位平台性能,满足应用场景多元化复杂化的性能需求,奠定理论基础。
空间纳米定位平台,是超精密加工、微/纳操作、原子力显微测量、纳米压印、光纤对接等领域关键共性基础部件,传统设计方法面临多支链耦合、性能评价指标不全面、优化不充分等瓶颈问题。本项目以压电驱动空间柔顺并联纳米定位平台为研究对象。首先,结合双轴柔性铰链柔度单元计算模型,给出了空间六支链柔顺并联机构误差优于5%的有限单元静力学求解方法,实现了12毫秒的高效计算效率,初步解决了空间多维柔度计算建模难、精度不高、计算耗时长的问题;其次,提出了基于6-RRRR构型的空间六支链柔顺并联纳米定位平台,刚度与工作空间测试、轨迹追踪等实验结果验证了其优异的性能图谱;最后,控制压电驱动空间纳米定位平台生成离面位移,量化表述了“离面位移激励值-微视觉运动追踪精度劣化值”映射特性,并搭建了一套基于压电驱动柔顺机构柔顺控制的微定位、微视觉与力交互实验系统,初步探索了压电驱动空间柔顺并联纳米定位平台在微纳加工、微创着色、飞行刺晶、细胞操作等场景的应用。本项目预期在超精密加工、精密测量与微纳操作技术领域得到应用,在精密电子制造装备领域获得经济效益。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
基于高频压电驱动/微视觉反馈的柔顺定位平台动力学与控制研究
压电型直线电机驱动的二自由度纳米定位平台及定位技术
基于全柔顺并联支撑机构的空间微纳尺度超精密定位系统研究
压电尺蠖电机驱动式两自由度大行程高分辨率并联解耦精密定位平台的研究