The mechanical properties of concrete exposed to high temperature is the fundamental basis of fire-resistance analysis and safety design of engineering structures. Based on the research achievements from previous projects supported by the National Natural Science Foundation of China, the constitutive model and mechanisms responsible for the progressive/explosive spalling of concrete under high temperature and multi-physics coupled-field are to be further studied in this project...With the interactions between mesoscopic constituents of concrete consistently accounted for, a physical constitutive model is first proposed for the modeling of high temperature mechanical behavior. The damage mechanisms and evolution laws with well-defined physical interpretations are systematically investigated. The damage constitutive theory with the mesoscopic heterogeneities appropriately incorporated is then established for concrete exposed to high temperature...The coupling laws between the mechanical behavior of concrete and the transport of moisture/heat under high temperature are thoroughly explored and the significant influences of tensile localized damage are consistently considered. The coupled hygro-thermo-chemo-mechanical method is then developed, oriented for the prediction of progressive/explosive spalling of concrete exposed to high temperature. The numerical algorithm of high-efficiency is put forward for solving the governing partial differential equations and implemented in finite element software packages...To fully validate and verify the above theoretical and numerical achievements, two series of plain and reinforced concrete members are elaborately designed and experimentally tested under fire scenarios. By integrating the results obtained from both numerical simulations and experimental studies, the distribution and evolution laws of the tensile localized damage in concrete exposed to high temperature are comprehensively analyzed. The physical mechanisms responsible for the progressive/explosive spalling of concrete are then scientifically discovered, resulting eventually in a novel predictive criterion. ..The above research achievements provide important theoretical basis and key technical support for the performance-based analysis, design and safety assessment of concrete structures under high temperature like fire scenarios.
混凝土高温力学性能研究是工程结构抗火分析和安全性设计的基石。本项目从国家优秀青年基金的科研成果出发,进一步深入研究高温、多场耦合条件下混凝土的本构关系及剥落爆裂机理。考虑细观各相组分的相互作用,提出混凝土高温力学行为的细观物理本构模型,系统研究混凝土的高温损伤机制和具有明确物理意义的损伤演化法则,建立合理反映细观非均质特性的混凝土高温损伤本构理论;探究混凝土高温力学行为与湿-热传输过程的耦合规律,客观描述受拉局部损伤的重要影响,发展面向混凝土高温剥落爆裂的多场耦合分析方法,研究提出控制方程的高效求解算法并进行数值实现。为了充分验证上述研究成果,设计并开展混凝土构件的高温明火试验;有机结合数值模拟与试验研究,综合分析不同要素下混凝土受拉局部损伤的分布和变化规律,科学揭示高温剥落爆裂的物理机理并提出合理的预测准则,为基于性能的混凝土结构抗火分析、设计及安全评估提供重要理论基础和关键技术支撑。
在项目执行期内,本项目针对混凝土结构抗火性能分析这一重大需求,聚焦混凝土高温力学行为的细观损伤机理、高温剥落爆裂的局部损伤机理和预测准则等关键科学问题,开展了难度较大、但具有关键地位的混凝土结构高温损伤破坏全过程分析方法等方面的深入研究,取得了以下具有较大影响力的创新性学术成绩:(1)提出了基于能量的混凝土高温损伤本构模型及其数值实现算法,为混凝土结构高温损伤破坏分析奠定关键基础;(2)创建了混凝土结构损伤破坏分析的统一相场理论,并将其扩展至高温热-力耦合环境,为混凝土结构的高温热—力耦合损伤分析和剥落爆裂预测提供了有效工具;(3)提出了混凝土结构相场损伤分析的BFGS整体隐式算法并率先在ABAQUS等软件平台实现,解决了混凝土结构高温损伤破坏全过程分析的关键难题。项目执行期内,项目负责人在本领域国际顶级SCI收录期刊发表学术论文24篇,其中第一/通讯作者SCI论文21篇(14篇同时为第一和通讯作者、另7篇为通讯作者);作为土木工程领域国内首位学者(也是迄今该系列会议最年轻的大会报告人),受邀在第三届国际损伤力学会议做40分钟大会报告;受邀为顶级综述期刊Advances in Applied Mechanics撰写180余页的论文,是该刊70年历史上首位来自中国大陆土木工程领域的特邀撰稿人。培养博士后1人,博士研究生4人,硕士研究生19人;项目组主要成员获批国家自然科学基金委面上项目3项、青年项目1项、中国博士后科学基金面上项目一等资助1项和特别资助项目1项;获得国家自然科学二等奖1项(排名4,2016年)、上海市科技进步一等奖1项(排名2,2019年)。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
玉米叶向值的全基因组关联分析
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究
钢纤维混凝土的本构关系及疲劳损伤研究
混凝土在高温和应力下的耦合本构关系
水饱和混凝土含损伤动态本构关系与水下混凝土爆破破坏机理研究
基于极限状态思想的混凝土损伤本构关系研究