Electrode materials, the core component of supercapacitors, play a vital role in the development of high performance supercapacitors. The three-dimensional (3D) electrodes are with large electroactive areas, fast electron transport and in favor of electrolyte ion diffusion, and thus can significantly improve the electrochemical performance. However, the key issue for developing high performance 3D electrodes is to search for good electron transport materials with high specific capacitance, good electrical conductivity and chemical stability. Here, we have designed and prepared high performance 3D coaxial nanotube array (Co-Ni sulfides@transition metal hydroxides) electrodes, in which the Co-Ni nanotube array is used as the electron transport scaffold for loading transition metal hydroxide nanomaterials. We have systematically investigated the relationship between the chemical composition, crystal structure and microstructure of the electrodes and electrochemical performance via the microstructure and electrochemical characterization techniques. The successful completion of this project will reveal the energy storage mechanisms of the 3D coaxial nanotube array, which also can provide a new idea for designing advanced energy storage electrode materials, and contribute to the development of high performance supercapacitors.
电极材料是超级电容器的核心部分,是发展高性能超级电容器的关键要素。三维电极具有电活性面积大,电子传输快和利于电解质离子扩散等特点,可极大地提高电极材料的电化学性能。在研发高储能三维电极过程中,亟待解决的问题是寻找具有高电容、导电性和化学稳定性好的电子传导材料。本项目提出以Co-Ni硫化物纳米管阵列为电子传导体,以此来负载过渡金属氢氧化物纳米材料,从而形成高储能的三维同轴纳米管阵列(Co-Ni硫化物@过渡金属氢氧化物)电极。利用微观表征技术和电化学测试方法,系统研究三维电极的组分、晶体结构和微/纳结构与电化学性能间的内在联系,阐明其储能机理,为构筑高储能电极材料的结构模型提供新思路,为研制高性能超级电容器奠定坚实的基础。
电极材料是超级电容器的核心部分,是发展高性能超级电容器的关键要素。本项目从开发大比表面积三维导电框架和高性能活性材料出发,通过结构和成分调控,达到构建高储能超级电容器电极材料的目的。在大比表面积三维导电框架的制备方面,以商业镍泡沫和碳布为前驱体,通过氨气的高温刻蚀或以尿素为碳和氨源的化学气相沉积过程,分别形成了多孔镍泡沫和氮掺杂碳纳米管阵列三维集流体。在高性能活性材料的选择及电化学性能方面,以Co-Ni双金属氧族化合物(氧化物、硫化物和硒化物)纳米阵列结构为例,通过与高导电碳材料的有机复合、掺杂金属和调控成分,系统地研究了组成与电化学性能间的内在联系,弄清了氧族化合物的储能机理,且筛选出性能优异的Co-Ni硒化物活性材料。集合氮掺杂碳纳米管三维集流体和Co-Ni硒化物活性材料的特点,构建了电位窗口为1.6 V的Co-Ni硒化物/氮掺杂碳纳米管//羟基氧化铁/氮掺杂碳纳米管固态柔性不对称超级电容器器件。在4 mA cm-2的放电电流下,此器件表现出高达12.3 F cm-3的体积比电容和和良好的循环稳定性(循环20000次体积比电容仅损耗 ~ 14 %)。此外,器件在4 mA cm-2的放电电流下能量密度可达4.4 mWh cm-3,且在功率密度为200 mW cm-3时仍能保持在2.6 mWh cm-3,是Co-Ni氧化物基器件的5倍以上。因此,本项目的实施为构筑高储能电极材料的结构模型提供了新思路,为研制高性能超级电容器奠定坚实的基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
钢筋混凝土带翼缘剪力墙破坏机理研究
Identification of the starting reaction position in the hydrogenation of (N-ethyl)carbazole over Raney-Ni
Glycyrrhizic acid based self-assembled helical nanostructures as scaffolds for asymmetric Diels-Alder reaction
过渡金属碳化物三维网络结构的构筑与超电容性能研究
碳插层类石墨烯层状过渡金属硫化物超级电容器电极材料的构筑及性能研究
柔性SiC纳米阵列电极材料的制备及其超电容特性研究
高比容量石墨烯/过渡金属氢氧化物复合超级电容器电极材料研究