The location and intensity of non-resolved space object can be obtained in space-based surveillance, however, the object material, configuration and attitude are lost. Spectrum difference reflecting the inherent properties of the object can be used as an important means of object recognition. At present, extraction of the object material, configuration and attitude based on the spectral data still lacks the directed and effective methodology. Recognition of non-resolved space object needs further research. In this research, firstly, considering the background, material, structure and orbit, mathematical model of spectral properties of space object will be established, and spectral properties of the object surface materials will be measured. Secondly, methods of object feature extraction and recognition will be proposed, including curve fitting, characteristic matching, database searching based on the spectral data and inverse calculation based on the mathematical model of spectral properties. Finally, simulation of object feature extraction and recognition will be done based on the above for method validation. A methodology for the material, configuration and attitude extraction and recognition of non-resolved space object from space-based spectral data will be put forward by theoretical modeling, experimental measurement and simulation analysis. The modeling and simulation results will provide a technical support in space-based application.
天基空间目标观测时,对于远距离目标,通常只能得到一个点的相关信息,包括点的位置和灰度等,损失了目标的材料、构型和姿态等特征。而代表物体固有属性的光谱差异信息可以作为识别目标的一种重要手段。目前,基于光谱数据同时提取目标的材料、构型、姿态等特征还缺乏具有针对性的、行之有效的方法,还有待深入研究。 本项目首先从目标光谱数据的产生特点出发,综合考虑目标的背景特性、材料特性、结构特性、轨道特性等因素,建立目标光谱特性的数学模型,测量并建立目标表面材料光谱特性数据样本;其次根据应用环境与目标的变化,针对性提出基于光谱数据曲线拟合、特征判定配合数据库搜索及基于光谱特性数学模型反演计算的目标特征提取与识别方法;最后进行典型参数条件下目标特征提取与识别仿真分析,为目标识别方法的验证提供依据。通过理论建模、实验测量、仿真分析探索出一套基于光谱的空间点目标特征提取与识别方法,为天基应用提供技术支撑。
针对传统的点目标观测仅能获取位置信息的局限,综合考虑目标的材料特性、结构特性、背景特性、轨道特性等因素,在目标多类特征与目标光谱特性之间建立了一种精确的映射关系,探索出一套不依赖于大量仿真数据的、定量的、高效的目标特征反演计算方法。研究工作对光电组合测量载荷的方案设计与论证具有技术支撑意义,对光电探测识别算法的开发、仿真测试系统的研制具有理论指导意义。拓展了目标光谱特性的应用,提升了目标特征识别的能力。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种基于多层设计空间缩减策略的近似高维优化方法
基于LS-SVM香梨可溶性糖的近红外光谱快速检测
基于改进LinkNet的寒旱区遥感图像河流识别方法
基于MCPF算法的列车组合定位应用研究
基于主体视角的历史街区地方感差异研究———以北京南锣鼓巷为例
基于NTF和HHT的空间碎片天基高光谱探测与识别方法
天基非合作空间目标跟踪与识别的关键技术研究
基于天基测向信息的空间目标运动感知理论与方法
基于天基雷达的空间多目标跟踪调度策略优化