In view of key device of all-solid-state lithium-ion battery of high security and high energy density of having the strategic significance, the project create anode/LiBaLaZrREAlO electrolyte/cathode film module of all-solid-state lithium-ion battery. The new nanometer solid electrolyte film of LiBaLaZrREAlO are prepared with a molten-salt method of using the eutectic mixed lithium salts as the reactant and the meltion agent, without washing process and with rare earth elements as dopants. The solid electrolyte film with nanowire arrays are prepared by anodic oxidation method. The filling the electrolyte film with nanowire arrays with the anode and cathode respectively and the solid electrolyte film form anode/LiBaLaZrREAlO electrolyte/cathode film module by sintering. The influence laws of preparation conditions on the structure, thickness and conductivity performance of the solid electrolyte film, and on the electrochemical properties of the anode/electrolyte/cathode film module are explored. The relationships among the composition, structure and performance and action mechanism of rare earths are explored, providing a theoretical basis for the development of new film cell. The economic molten-salt method and rare earths are used in preparing the anode/LiBaLaZrREAlO electrolyte/cathode film module, saving energy and reducing the preparation cost, and changing the resource advantage to economic advantage.
针对具有战略意义的高安全性、高能量密度的全固态锂离子电池的关键器件,本项目研制新型的负极/LiBaLaZrREAlO电解质/正极膜组件。用具有最低共熔温度的混合锂盐作反应物并兼作熔剂、无需洗涤的廉价熔盐法、稀土作掺杂剂等,制备新型的纳米LiBaLaZrREAlO固体电解质膜。用阳极氧化法等制备纳米线阵列的电解质膜,将负极、正极分别填充在纳米线阵列的电解质膜中,并与电解质膜烧结为新型的负极/LiBaLaZrREAlO电解质/正极膜组件。探索制备条件对该电解质膜的结构、厚度和电导率等性能影响的规律,及其对该膜组件电化学性能影响的规律;研究该膜组件组成、结构、特性之间的构效关系,阐明稀土的作用本质。为研制新型膜电池提供理论依据。采用经济的熔盐法和稀土制备性能优良的负极/LiBaLaZrREAlO电解质/正极膜组件,可大幅度节能及降低制备成本,对我国变资源优势为经济优势具有重大意义。
本项目完成了计划的研究任务。针对具有战略意义的高安全性高能量密度的全固态锂离子电池的关键器件,研制出了Li/LiBaLaZrREAlO/LiNi1/3Co1/3Mn1/3O2膜组件(RE:Ce、Pr、Nd、Sm、Gd、Dy、Er)。用熔盐法、熔盐固相法和稀土等,发明了消除晶界的LiBaLaZrREAlO(2种)、LiBaLaZrAlREWO(2种)、LiNiLaZrO、LiNiLaZrMO、LiCuLaZrO、LiCuLaZrMO等固体电解质膜。用阳极氧化法等制备纳米线阵列的电解质膜,将2片该膜与电解质膜烧结,将负极、正极分别填充在该膜两端中制得Li/LiBaLaZrREAlO/LiNi1/3Co1/3Mn1/3O2膜组件。探索了制备条件对该膜的结构和电导率等性能影响的规律,及对Li/LiBaLaZrREAlO/LiNi1/3Co1/3Mn1/3O2膜组件的电化学性能影响的规律;研究了该膜组件组成、结构、特性之间的构效关系,阐明了稀土的作用本质。为研制新型膜电池提供理论依据。用制备的后4种膜与Li和LiFePO4分别组装电池并测其电化学性能。制备膜的电导率σ(25℃)分别为:3.26×10-4-3.62×10-3、2.96×10-4-2.73×10-3、7.52×10-4-9.86×10-3、6.35×10-4-9.13×10-3、2.32×10-4-8.62×10-4、3.71×10-4-3.67×10-3、3.32×10-4-1.62×10-3、7.63×10-4-9.92×10-3Scm-1。由Li/LiBaLaZrREAlO/LiNi1/3Co1/3Mn1/3O2膜组件组装的电池的初始放电容量C为135.2-151.7mAhg-1,容量保持率η(20个循环)为93.3-94.5%。电池电阻R为432.8-506.2Ω。膜中和电池中RE分别对其σ和C、η、R的影响次序均为:Er>Dy>Sm>Gd>Y>Pr>Nd>Ce。4种固态电池的C和η为140.1-163.2 mAhg-1和93.3-96.0%。采用经济的熔盐法和稀土制备性能优良的Li/LiBaLaZrREAlO/LiNi1/3Co1/3Mn1/3O2膜组件,可大幅度节能及降低制备成本,对我国变资源优势为经济优势具有重大意义。申请了8项中国发明专利,其中已授权4项,发表了SCI、EI检索的文章12篇。
{{i.achievement_title}}
数据更新时间:2023-05-31
人β防御素3体内抑制耐甲氧西林葡萄球菌 内植物生物膜感染的机制研究
粉末冶金铝合金烧结致密化过程
锂离子电池热失控特性及电池火抑制过程
滑膜软骨瘤:如何提高诊断准确率和治疗中肿瘤细胞的清除率
高度近视黄斑裂孔内界膜的超微结构及生物力学性能研究
NTCDA基羰基有机材料作为全固态锂离子电池负极的研究
薄膜型全固态锂离子电池正极材料制备及其性能研究
全固态薄膜锂离子电池快锂离子固态电解质的研究
锂离子电池用离子液体型全固态聚合物电解质的研究