The advance of intelligent Internet of Things (IoT) requires a large number of independent sensors, while the power supply of the sensors has become the bottleneck of its development. The birth of triboelectric nanogenerator (TENG) makes it possible to collect the wasted mechanical energy in the environment as power source to drive a self-powered electronic system. However, due to the peak output with high voltage and low current values, how to construct a stable and reliable TENG based self-powered sensing system is critical and urgent. For the first time, a self-powered sensing system based on the load impedance matching effect between TENGs and high-performance sensors has been proposed in this project. Firstly, the intrinsic capacitance and impedance output characteristics of TENG will be investigated and the relationship between intrinsic capacitance and output characteristics will be also established. Then, by comparing the output characteristics of resistive load and capacitive load, the self-powered sensing mechanism based on coupling effect of triboelectrification and external resistance/capacitance change will be clarified. By introducing the switches in the circuit, we will develop the matching mechanism and quantification process of TENG, sensor and LEDs, and finally, to obtain several stable and reliable self-powered sensing systems. This project would open up a new approach for the development of TENG in the field of self-powered sensing. It will be of great scientific significance and has a broad prospect of market applications in IoT fields in the near future.
智能物联网的发展需求大量独立的传感器,而传感器供电问题成为其发展的瓶颈。摩擦纳米发电机的诞生,使得收集环境中用其他方法难以捕获的机械能实现自驱动传感成为可能。但因摩擦纳米发电机高电压低电流峰值输出特性,如何利用摩擦纳米发电机直接为传感器供电实现自驱动成为当前亟待解决的问题。本项目首次提出一种基于摩擦纳米发电机和高性能传感器负载匹配效应的自驱动传感系统,以研究摩擦纳米发电机的本征电容特性及负载输出特性为出发点,通过对比研究摩擦纳米发电机阻性负载和容性负载输出特性的异同,阐明基于摩擦起电和外致阻/容变耦合效应的自驱动传感机制,并通过引入开关装置,研究摩擦纳米发电机、传感器和发光二极管的有效匹配机制和量化传感机制,最终获得稳定可靠具有实用价值的高性能自驱动传感系统。本项目的开展为摩擦纳米发电机的发展和应用开拓了新思路,在未来的物联网自驱动传感领域有着重要的科学意义和广阔的市场前景。
利用摩擦纳米发电机(TENG)实现自驱动传感成为解决物联网中大量独立分散的传感节点供电难题的有效方案。本项目基于TENG收集环境机械能直接为传感器供电的技术路线,创新性地提出了基于TENG负载匹配效应的自驱动传感技术,解决了TENG负载输出特性调控机制和基于摩擦起电和外致阻/容变耦合效应的自驱动传感机制两个关键问题。项目以研究TENG的本征电容特性及负载输出特性为出发点,首先构建了垂直型接触分离式和转盘型独立层式两种器件结构,研究了不同工作频率、接触面积和分离距离下的电学输出性能,构建了开路电压、短路电流、转移电荷量、品质因数与本征电容特性关系模型;通过公式推导揭示了接入电阻或电容负载时TENG的输出变化规律,并在实验中验证了在不同外阻下TENG的负载输出特性,发现在不同工作状态下均存在三个典型的“工作区域”,当外接电阻处在KΩ级别时,输出电压趋于0,当电阻处在KΩ至MΩ时,输出电压随着外阻的增加而增加,当外接电阻处在GΩ时输出电压达到最大,当外接电容负载时输出特性类似,发现当负载电容在pF至nF时,TENG的输出电压会明显降低,通过对比研究TENG阻性负载和容性负载输出特性的异同,首次阐明了基于摩擦起电和外致阻/容变耦合效应的负载输出特性及其调控机制;通过制备电阻式/电容式传感器,调控传感器电阻/电容工作变化区间与TENG负载输出“工作区域”一致,直接连接TENG、传感器和发光二极管,利用TENG收集环境机械能为系统供电,负载传感器随外界环境变化其本征物理量发生改变,LED根据负载输出大小而工作可作为量化显示器,揭示了基于摩擦起电和外致阻/容变耦合效应的自驱动传感机制,最终基于该原理构建了多套具有实用价值的高性能自驱动传感系统,包括汽车尾气排放自驱动监测系统、管道传输自驱动水质监测系统、贴片式可穿戴自驱动紫外线探测系统、鞋内嵌入式自驱动计步器等。本项目的开展为TENG的发展和应用开拓了新思路,在自驱动传感领域有着重要的科学意义和广阔的市场前景。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
基于分形L系统的水稻根系建模方法研究
路基土水分传感器室内标定方法与影响因素分析
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
农超对接模式中利益分配问题研究
基于摩擦纳米发电机的自驱动可穿戴传感系统机理与应用研究
基于氧化锌纳米线阵列的光电和热电复合型纳米发电机及自驱动传感器研究
新型热释电纳米发电机及自驱动传感研究
基于摩擦起电和LC频率调制的自驱动无线双参数传感器关键技术研究