Conventional preserved platelets is difficult to meet clinical needs,so refrigerated platelets has been a research focus. However, the refrigerated platelets disappear rapidly from the circulation in vivo. Our group has found that trehalose could inhibit the cold-activation of platelets and improve the survival rate in the body. But the molecular mechanism is not clear. Combining the two ways of platelets clearance in vivo (one was that hepatic macrophage β2 integrin (hepatocytes Asgr-1/Asgr-2) binding to β-N-acetylglucosamine (galactose) residues in the clusters leaded to rapid clearance of acutely chilled platelets after transfusion, the other one was that phosphatidylserine (PS) exposure recognized by hepatic macrophage leaded to rapid clearance) . We suggest the hypothesis that the trehalose plays an important role in platelet clearance. Trehalose could interact with membrane phospholipids or membrane glycoprotein after entering platelet, so that PS and glycan could not be exposured, at last the platelets would not been cleared rapidly. Based on the above researches, the platelets will be used to store on different temperatures (4, 10, 22°C) with or without trehalose, Ca++ antagonists and chloride channel blockers to investigate the PS and glycan exposure and function in vitro, and then to evaluate clotting function in vivo. By these researches, the project will identify the role of trehalose on the clearance of platelets stored at cold temperature.
常温保存血小板难以满足临床需求,低温保存血小板是本领域的研究热点,而低温活化导致体内被清除是现在面临的重要问题。本项目组前期研究发现海藻糖可有力抑制血小板低温活化,提高体内存活率,但其保护机制还不清楚,结合血小板体内被清除的两条途径:一为膜磷脂酰丝氨酸暴露(PS)暴露导致巨噬细胞识别并吞噬,另一条为膜β-乙酰葡萄糖胺暴露被巨噬细胞受体β2识别而吞噬,或β-半乳糖暴露被肝细胞受体Asgr-1/Asgr-2识别并吞噬,我们推测海藻糖进入血小板后,与膜磷脂或膜糖蛋白结合,一方面阻止了膜磷脂紊乱,从而阻止PS外翻,另一方面抑制了膜糖蛋白水解从而阻止糖基暴露,最终降低冷藏血小板在体内的清除。本研究将用海藻糖在不同温度条件下(4、10、22℃)保存血小板以评估PS暴露和多糖暴露、细胞水平吞噬及动物体内血小板的存活。通过本项目的实施明确海藻糖保护冷藏血小板的分子机制,为海藻糖进一步应用于临床提供依据。
低温保存血小板研究对满足临床需求具重要意义,但输注体内后极易被清除,本项目组前期研究发现海藻糖可有效维持低温血小板功能,但其保护机制未明确,结合体内被清除的两条途径:一为膜磷脂酰丝氨酸暴露(PS)暴露导致识别被吞噬,二为膜糖基暴露被吞噬,本项目对该两条途径展开了研究(4℃、10℃)。PS及多糖暴露研究结果表明,尽管与无海藻糖组比较PS暴露降低没有统计学意义,但具抑制其暴露的作用趋势;膜糖基β-gal暴露增多,第7天海藻糖组分别为(46.88±5.62)%和(46.29±0.64)%,明显高于无海藻糖组(13.02±0.08)%和(11.22±0.48)%,(p<0.001),相应β-GlcNAc暴露减少,海藻糖组为(45.51±12.71)%和(30.07±5.68)%,无海藻糖组为(75.67±3.46)%和(72.88±0.35)%,同温条件下比较差异具显著统计学意义,p<0.001。第8天海藻糖组肉眼可见涡旋存在,未发生明显聚集,无海藻糖组肉眼可见聚集颗粒,4度最为严重。海藻糖在4℃、10℃下均可抑制膜电位消失,第7天为(66.18±0.24)%和(56.87±2.14),与无海藻糖组比较降低明显缓慢(28.73±0.42)%和(26.93±0.24)%,差异具显著统计学意义,p<0.001。为明确海藻糖是否影响PS暴露的重要蛋白分子,对低温血小板进行蛋白谱分析发现海藻糖引起17个蛋白上调,60个下调,170个蛋白磷酸化水平上调,7个下调,其中有负责转运功能的重要蛋白APOA1、MYL12A、APOE等可能关系到PS外翻。膜蛋白FERMT,STX4及MYL9的磷酸化也可能参与PS外翻。miRNA表达分析,海藻糖引起血小板125条miRNA表达变化,hsa-miR-2277-5p(上调1.59倍,靶向AKT),hsa-miR-4707-3p (上调3.19倍,靶向p38α),hsa-miR-28-5p(下调-1.75倍,靶向ERK1/2),hsa-miR-152-5p (上调1.58倍,靶向αⅡbβ3),这些影响血小板凋亡途径的miRNAs可能在PS外翻中发挥了作用。同时,WB结果证实海藻糖抑制了p-AKT,p-CaMKⅡα,p-p38,p-ERK的表达,说明对其凋亡发生有抑制作用。综上,本项目证实海藻糖有可能通过凋亡途径保护低温血小板,而不是抑制膜糖基脱落途径
{{i.achievement_title}}
数据更新时间:2023-05-31
PI3K-AKT-mTOR通路对骨肉瘤细胞顺铂耐药性的影响及其机制
IVF胚停患者绒毛染色体及相关免疫指标分析
血小板微粒释放及对肿瘤作用的研究进展
植物中蛋白质S-酰化修饰的研究进展
3-羟基糖取代对槲皮素与人血清蛋白相互作用的影响
磷脂酰丝氨酸暴露血小板加重心脏外科术后急性肺损伤的机制研究
内质网–质膜互作在凋亡细胞磷脂酰丝氨酸外翻过程中的作用机制研究
磷脂酰丝氨酸受体的结构与功能研究
磷脂酰丝氨酸过量生物合成和代谢调控的研究