This project studied LQ problems for some partial differential equations with boundary controls or pointwise controls.and stochastic differential equations, and the weighted operators in the quadratic cost functionals allowed to be indefinite. It were established the relations among the wellposedness of LQ problems, the.solvability of LQ problems, the associated Riccati equation and the frequency characteristic; and it were also given the feedback synthesis of optimal controls and the frequency type conditions for the wellposedness and solvability of LQ problems.
本项目拟对由几类偏微分方程边界控制和点控制支配的线性二次最优控制问题进行研究,其中二次性能指标具有不定号的加权算子。建立起这些问题的适定性、可解性、相应黎卡提方程和频率特征相互的关系;给出最优控制的状态反馈表示和适定性、可解性的频率条件;并运用这些结果建立非线性系统绝对稳定性的频率判据。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种基于多层设计空间缩减策略的近似高维优化方法
基于腔内级联变频的0.63μm波段多波长激光器
汽车侧倾运动安全主动悬架LQG控制器设计方法
基于直观图的三支概念获取及属性特征分析
城市生活垃圾热值的特征变量选择方法及预测建模
线性多变量时滞系统最优解析设计
无限维系统的最优控制理论及其应用
无限维系统最优控制与数量金融若干问题研究
无限维非线性系统的分岔控制