With the rapid development of space communication and deep space exploration, there is an urgent need for large aperture and high-precision space-borne mesh antennas. The uncertainties in antenna structure will seriously affect the electromagnetic (EM) performances of the antenna. The existing sensitivity analysis method cannot finish the selection of the key uncertain factors considering multiple EM performances, and the robustness measurement methods based on the single uncertainty model are not able to guarantee the efficiency and accuracy of the mesh antennas robust design. To address these problems, firstly, the influence mechanism of multi-source uncertainties on the EM performances is revealed, and a global sensitivity analysis method of uncertain factors for multiple EM performances is proposed. The key factors affecting the EM performances then can be obtained to simplify the robust design model. Secondly, a hybrid quantitative model of uncertain factors in antenna structure is established, and a hybrid robustness index with the EM performances is developed based on the “revere mapping” method, which can show the robustness of design candidates. Thirdly, based on the global sensitivity analysis method and the hybrid robustness index, an integrated structural-electromagnetic robust design model is established to obtain the optimal antenna design scheme,which can meet the requirement of the EM performances. Finally, an experimental verification system is developed to revise and improve the proposed theoretical model and design method. This project will provide theoretical guidance for the engineering application of the next generation of large aperture and high-precision space-borne mesh antennas in China.
空间通信、深空探测等领域的高速发展对大口径、高精度星载网状天线提出了迫切需求,而天线结构中存在的多源不确定性因素会严重影响天线电性能。现有灵敏度分析方法无法实现多重电性能下关键因素的筛选,且目前基于单一不确定模型的稳健性衡量方法无法保证网状天线稳健设计的效率和精度。针对上述问题,首先,揭示多源不确定因素对电性能的影响机理,构建面向多重电性能的不确定因素全局灵敏度分析模型,获取影响电性能的关键因素,实现设计模型的简化;其次,建立天线结构不确定因素的混合量化模型,基于“逆向映射”思路提出考虑电性能的混合稳健性衡量指标,实现对设计方案的稳健性衡量;再次,基于前述全局灵敏度分析和混合稳健性指标,建立混合模型下天线机电集成稳健设计模型,获取最优设计方案,满足电性能要求;最后,研制实验验证系统,修正和完善所提出的理论模型和设计方法。项目将为我国下一代大口径、高精度星载网状天线的工程应用提供理论指导。
国防工业和国民经济的快速发展对星载天线提出了大口径、高频段、高精度的迫切设计需求。天线结构中不可避免的各种不确定性因素使得电性能的变化呈现不确定的特性。为保证不确定性因素影响下天线电性能的稳定,需开展天线结构稳健设计。为解决该问题,本项目从三个方面开展了研究。首先,从全局灵敏度角度出发,研究了各种不确定性误差对天线精度的灵敏度信息。提出了基于灵敏度指标的代理模型精度衡量准则,实现了灵敏度指标的准确高效计算。发现了影响天线精度的关键因素,为后续的稳健设计提供支撑。其次,研究了不确定性因素下的天线方向图的稳健性衡量方法。为量化不同样本点对方向图边界的影响程度,根据空间剖分思想提出了基于广义距离的贡献度指标。针对全局采样和局部采样,分别研究了其采样准则来确定动态更新样本的位置,实现了基于数据驱动的电性能稳健性衡量。最后,研究了如何构建高效的天线多学科稳健性设计方法。基于先验知识确定了代理模型的抽样空间,给出了考虑增益损失的稳健性指标的自适应代理模型,从而提出基于机电集成分析和自适应代理模型的天线稳健性设计方法。研究表明,考虑机电集成的天线稳健性设计方法可实现网状天线在不确定性因素下的电性能稳定性。本项目所建立的网状天线多学科全局灵敏度分析和稳健性设计方法,可为大口径高精度网状天线的设计和工程应用提供理论参考和指导。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
硬件木马:关键问题研究进展及新动向
基于SSVEP 直接脑控机器人方向和速度研究
模态坐标系下星载网状天线电性能动力响应分析及结构优化设计
星载三层赋形网状天线的机电集成设计及力热匹配机理研究
太空环境下考虑展开臂铰链间隙的大型网状天线电性能稳健性研究
极端热环境下高超声速飞行器天线罩的电性能动态分析及结构稳健设计